飞机SHM系统传感器技术评估

Q4 Engineering
A. Kurnyta, K. Dragan, M. Dziendzikowski
{"title":"飞机SHM系统传感器技术评估","authors":"A. Kurnyta, K. Dragan, M. Dziendzikowski","doi":"10.2478/fas-2013-0005","DOIUrl":null,"url":null,"abstract":"Abstract SHM is a monitoring system which uses sensors, actuators and data transmission, acquisition and analysis, permanently integrated with the inspected object. The objective of SHM is to detect, localize, identify and predict development of fatigue fractures, increasing safety and reliability. This paper presents an assessment of sensor technologies used in aircraft SHM system. Due to the fact that most of these measurement methods are relatively new and still under development the present appraisal focuses on a number of parameters with reference to each method, including a sensor’s installation issues, reliability, power consumption, sensor infrastructure, sensitivity and cost and availability. The work is predominantly focused on the assessment ofpermanently bonded sensors, such as foil strain gages, Comparative Vacuum Monitoring (CVM), Piezo sensors (PZT), Eddy-Current Transducers (ECT). Finally, all these methods are briefly discussed.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/fas-2013-0005","citationCount":"1","resultStr":"{\"title\":\"Assessment of Sensor Technologies for Aircraft SHM Systems\",\"authors\":\"A. Kurnyta, K. Dragan, M. Dziendzikowski\",\"doi\":\"10.2478/fas-2013-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract SHM is a monitoring system which uses sensors, actuators and data transmission, acquisition and analysis, permanently integrated with the inspected object. The objective of SHM is to detect, localize, identify and predict development of fatigue fractures, increasing safety and reliability. This paper presents an assessment of sensor technologies used in aircraft SHM system. Due to the fact that most of these measurement methods are relatively new and still under development the present appraisal focuses on a number of parameters with reference to each method, including a sensor’s installation issues, reliability, power consumption, sensor infrastructure, sensitivity and cost and availability. The work is predominantly focused on the assessment ofpermanently bonded sensors, such as foil strain gages, Comparative Vacuum Monitoring (CVM), Piezo sensors (PZT), Eddy-Current Transducers (ECT). Finally, all these methods are briefly discussed.\",\"PeriodicalId\":37629,\"journal\":{\"name\":\"Fatigue of Aircraft Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2478/fas-2013-0005\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue of Aircraft Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fas-2013-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fas-2013-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

SHM是一种利用传感器、执行器以及数据传输、采集和分析与被检测对象永久结合在一起的监测系统。SHM的目标是检测、定位、识别和预测疲劳断裂的发展,提高安全性和可靠性。本文对飞机SHM系统中使用的传感器技术进行了评估。由于这些测量方法中的大多数都是相对较新的,仍在发展中,目前的评估侧重于参考每种方法的一些参数,包括传感器的安装问题、可靠性、功耗、传感器基础设施、灵敏度、成本和可用性。这项工作主要集中在永久键合传感器的评估上,如箔应变计、比较真空监测(CVM)、压电传感器(PZT)、涡流传感器(ECT)。最后,对这些方法进行了简要的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Sensor Technologies for Aircraft SHM Systems
Abstract SHM is a monitoring system which uses sensors, actuators and data transmission, acquisition and analysis, permanently integrated with the inspected object. The objective of SHM is to detect, localize, identify and predict development of fatigue fractures, increasing safety and reliability. This paper presents an assessment of sensor technologies used in aircraft SHM system. Due to the fact that most of these measurement methods are relatively new and still under development the present appraisal focuses on a number of parameters with reference to each method, including a sensor’s installation issues, reliability, power consumption, sensor infrastructure, sensitivity and cost and availability. The work is predominantly focused on the assessment ofpermanently bonded sensors, such as foil strain gages, Comparative Vacuum Monitoring (CVM), Piezo sensors (PZT), Eddy-Current Transducers (ECT). Finally, all these methods are briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fatigue of Aircraft Structures
Fatigue of Aircraft Structures Engineering-Safety, Risk, Reliability and Quality
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信