用衍射法测量微机械性能和应力

Q4 Engineering
Elżbieta Gadalińska, A. Baczmaňski
{"title":"用衍射法测量微机械性能和应力","authors":"Elżbieta Gadalińska, A. Baczmaňski","doi":"10.2478/fas-2013-0003","DOIUrl":null,"url":null,"abstract":"Abstract Diffraction methods are commonly used for the determination of the elastic lattice deformation and distortion from the displacement and broadening of the diffraction peak. These methods enable researchers to measure stresses and elastic properties of polycrystalline materials. The main advantages of diffraction methods are their non-destructive character and the possibility of macrostress and microstress analysis for multiphase and anisotropic materials. Measurements are performed selectively only for crystallites contributing to the measured diffraction peak, i.e. for the grains having lattice orientations for which the Bragg condition is satisfied. When several phases are present in the sample, measurements of separate diffraction peaks allow for the behaviour of each phase to be investigated independently. This method can be applied without any limitations to flat specimens. Numerical calculations of residual stresses around the rivets imply a very high stress gradientin the case of tangential stresses as well in the case of radial stresses. Attempting to verify these predictions, the residual stress measurements with an X-ray diffractometer were performed on riveted samples after the riveting process. In addition, complementary measurements of strain values with strain gauges during the riveting process were performed as well as the finite elements modelling. The aim of these measurements was to determine the stress values around the rivets and to compare results obtained with different techniques. On the other hand, the multi-scale crystallographic model of elastoplastic deformation is very convenient for the study of elastoplastic properties in microscopic and macroscopic scales. Comparison of experimental data with model predictions allows us to understand the physical phenomena that occur during a sample’s deformation at the level of polycrystalline grains. Moreover, the micro and macro parameters of elastoplastic deformation can be experimentally established. It should be stated that the characterisation of the residual stress field and elastic properties is important in the study of the mechanical behaviour of polycrystalline materials, including plasticity and damage phenomena. In this work, a new analysis method of neutron diffraction results obtained during in-situ tensile load is proposed and tested. The methodology is based on the measurements of lattice strains during in-situ tensile testing for several hkl reflections and for different orientations of the sample with respect to the scattering vector. As the result, the full stress tensor for preferred texture orientations in function of the applied stress can be determined using the crystallite group method. The experimental data are presented and compared with the self-consistent model calculations performed for groups of grains selected by different hkl reflections.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Micromechanical Properties and Stress Measurements with Diffraction Methods\",\"authors\":\"Elżbieta Gadalińska, A. Baczmaňski\",\"doi\":\"10.2478/fas-2013-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Diffraction methods are commonly used for the determination of the elastic lattice deformation and distortion from the displacement and broadening of the diffraction peak. These methods enable researchers to measure stresses and elastic properties of polycrystalline materials. The main advantages of diffraction methods are their non-destructive character and the possibility of macrostress and microstress analysis for multiphase and anisotropic materials. Measurements are performed selectively only for crystallites contributing to the measured diffraction peak, i.e. for the grains having lattice orientations for which the Bragg condition is satisfied. When several phases are present in the sample, measurements of separate diffraction peaks allow for the behaviour of each phase to be investigated independently. This method can be applied without any limitations to flat specimens. Numerical calculations of residual stresses around the rivets imply a very high stress gradientin the case of tangential stresses as well in the case of radial stresses. Attempting to verify these predictions, the residual stress measurements with an X-ray diffractometer were performed on riveted samples after the riveting process. In addition, complementary measurements of strain values with strain gauges during the riveting process were performed as well as the finite elements modelling. The aim of these measurements was to determine the stress values around the rivets and to compare results obtained with different techniques. On the other hand, the multi-scale crystallographic model of elastoplastic deformation is very convenient for the study of elastoplastic properties in microscopic and macroscopic scales. Comparison of experimental data with model predictions allows us to understand the physical phenomena that occur during a sample’s deformation at the level of polycrystalline grains. Moreover, the micro and macro parameters of elastoplastic deformation can be experimentally established. It should be stated that the characterisation of the residual stress field and elastic properties is important in the study of the mechanical behaviour of polycrystalline materials, including plasticity and damage phenomena. In this work, a new analysis method of neutron diffraction results obtained during in-situ tensile load is proposed and tested. The methodology is based on the measurements of lattice strains during in-situ tensile testing for several hkl reflections and for different orientations of the sample with respect to the scattering vector. As the result, the full stress tensor for preferred texture orientations in function of the applied stress can be determined using the crystallite group method. The experimental data are presented and compared with the self-consistent model calculations performed for groups of grains selected by different hkl reflections.\",\"PeriodicalId\":37629,\"journal\":{\"name\":\"Fatigue of Aircraft Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue of Aircraft Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fas-2013-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fas-2013-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

摘要衍射法是测定弹性晶格变形和畸变的常用方法,主要是通过衍射峰的位移和展宽来确定。这些方法使研究人员能够测量多晶材料的应力和弹性特性。衍射方法的主要优点是其无损特性和对多相材料和各向异性材料进行宏观应力和微应力分析的可能性。测量只对对测量的衍射峰有贡献的晶体进行选择性测量,即对具有满足布拉格条件的晶格取向的晶粒进行选择性测量。当样品中存在几个相时,单独的衍射峰的测量允许独立地研究每个相的行为。这种方法可以毫无限制地应用于平面试样。铆钉周围残余应力的数值计算表明,在切向应力和径向应力的情况下,铆钉周围的残余应力具有非常高的应力梯度。为了验证这些预测,在铆接过程后,用x射线衍射仪对铆接样品进行了残余应力测量。此外,在铆接过程中用应变片进行应变值的补充测量以及有限元建模。这些测量的目的是确定铆钉周围的应力值,并比较不同技术获得的结果。另一方面,弹塑性变形的多尺度结晶学模型为研究微观和宏观尺度的弹塑性特性提供了方便。将实验数据与模型预测进行比较,使我们能够了解样品在多晶颗粒水平上变形过程中发生的物理现象。此外,还可以通过实验建立弹塑性变形的微观和宏观参数。应该指出的是,残余应力场和弹性性能的表征在研究多晶材料的力学行为,包括塑性和损伤现象中是重要的。本文提出了一种新的中子衍射结果分析方法,并进行了试验。该方法是基于在几个hkl反射和样品的不同方向相对于散射矢量的原位拉伸测试期间晶格应变的测量。结果表明,利用晶群法可以确定优选织构取向的全应力张量随外加应力的变化规律。给出了实验数据,并与不同hkl反射选择的颗粒组的自洽模型计算结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micromechanical Properties and Stress Measurements with Diffraction Methods
Abstract Diffraction methods are commonly used for the determination of the elastic lattice deformation and distortion from the displacement and broadening of the diffraction peak. These methods enable researchers to measure stresses and elastic properties of polycrystalline materials. The main advantages of diffraction methods are their non-destructive character and the possibility of macrostress and microstress analysis for multiphase and anisotropic materials. Measurements are performed selectively only for crystallites contributing to the measured diffraction peak, i.e. for the grains having lattice orientations for which the Bragg condition is satisfied. When several phases are present in the sample, measurements of separate diffraction peaks allow for the behaviour of each phase to be investigated independently. This method can be applied without any limitations to flat specimens. Numerical calculations of residual stresses around the rivets imply a very high stress gradientin the case of tangential stresses as well in the case of radial stresses. Attempting to verify these predictions, the residual stress measurements with an X-ray diffractometer were performed on riveted samples after the riveting process. In addition, complementary measurements of strain values with strain gauges during the riveting process were performed as well as the finite elements modelling. The aim of these measurements was to determine the stress values around the rivets and to compare results obtained with different techniques. On the other hand, the multi-scale crystallographic model of elastoplastic deformation is very convenient for the study of elastoplastic properties in microscopic and macroscopic scales. Comparison of experimental data with model predictions allows us to understand the physical phenomena that occur during a sample’s deformation at the level of polycrystalline grains. Moreover, the micro and macro parameters of elastoplastic deformation can be experimentally established. It should be stated that the characterisation of the residual stress field and elastic properties is important in the study of the mechanical behaviour of polycrystalline materials, including plasticity and damage phenomena. In this work, a new analysis method of neutron diffraction results obtained during in-situ tensile load is proposed and tested. The methodology is based on the measurements of lattice strains during in-situ tensile testing for several hkl reflections and for different orientations of the sample with respect to the scattering vector. As the result, the full stress tensor for preferred texture orientations in function of the applied stress can be determined using the crystallite group method. The experimental data are presented and compared with the self-consistent model calculations performed for groups of grains selected by different hkl reflections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fatigue of Aircraft Structures
Fatigue of Aircraft Structures Engineering-Safety, Risk, Reliability and Quality
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信