线性离散时不变系统的正输出可控性

Q4 Engineering
Mourad Ouyadri, M. Laabissi, M. E. Achhab
{"title":"线性离散时不变系统的正输出可控性","authors":"Mourad Ouyadri, M. Laabissi, M. E. Achhab","doi":"10.2478/candc-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the output controllability of discrete linear time invariant systems (LTI) with non-negative input constraints. Some geometrical arguments and positive invariance concepts are used to derive the necessary and/or sufficient conditions for the positive output controllability of discrete LTI systems. The paper also provides several academic examples, which support the theoretical results.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"50 1","pages":"521 - 539"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive output controllability of linear discrete–time invariant systems\",\"authors\":\"Mourad Ouyadri, M. Laabissi, M. E. Achhab\",\"doi\":\"10.2478/candc-2021-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies the output controllability of discrete linear time invariant systems (LTI) with non-negative input constraints. Some geometrical arguments and positive invariance concepts are used to derive the necessary and/or sufficient conditions for the positive output controllability of discrete LTI systems. The paper also provides several academic examples, which support the theoretical results.\",\"PeriodicalId\":55209,\"journal\":{\"name\":\"Control and Cybernetics\",\"volume\":\"50 1\",\"pages\":\"521 - 539\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/candc-2021-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2021-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究具有非负输入约束的离散线性时不变系统(LTI)的输出可控性。利用一些几何参数和正不变性概念,导出了离散LTI系统正输出可控性的充分必要条件。本文还提供了几个学术实例来支持理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive output controllability of linear discrete–time invariant systems
Abstract This paper studies the output controllability of discrete linear time invariant systems (LTI) with non-negative input constraints. Some geometrical arguments and positive invariance concepts are used to derive the necessary and/or sufficient conditions for the positive output controllability of discrete LTI systems. The paper also provides several academic examples, which support the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control and Cybernetics
Control and Cybernetics 工程技术-计算机:控制论
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research: Systems and control theory: general systems theory, optimal cotrol, optimization theory, data analysis, learning, artificial intelligence, modelling & identification, game theory, multicriteria optimisation, decision and negotiation methods, soft approaches: stochastic and fuzzy methods, computer science,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信