{"title":"论数学规划中的强度量子正则性","authors":"N. Osmolovskii, V. Veliov","doi":"10.2478/candc-2021-0027","DOIUrl":null,"url":null,"abstract":"Abstract This note presents sufficient conditions for the property of strong metric subregularity (SMSr) of the system of first order optimality conditions for a mathematical programming problem in a Banach space (the Karush-Kuhn-Tucker conditions). The constraints of the problem consist of equations in a Banach space setting and a finite number of inequalities. The conditions, under which SMSr is proven, assume that the data are twice continuously Fréchet differentiable, the strict Mangasarian-Fromovitz constraint qualification is satisfied, and the second-order sufficient optimality condition holds. The obtained result extends the one known for finite-dimensional problems. Although the applicability of the result is limited to the Banach space setting (due to the twice Fréchet differentiability assumptions and the finite number of inequality constraints), the paper can be valuable due to the self-contained exposition, and provides a ground for extensions. One possible extension was recently implemented in Osmolovskii and Veliov (2021).","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"50 1","pages":"457 - 471"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the strong metric subregularity in mathematical programming\",\"authors\":\"N. Osmolovskii, V. Veliov\",\"doi\":\"10.2478/candc-2021-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This note presents sufficient conditions for the property of strong metric subregularity (SMSr) of the system of first order optimality conditions for a mathematical programming problem in a Banach space (the Karush-Kuhn-Tucker conditions). The constraints of the problem consist of equations in a Banach space setting and a finite number of inequalities. The conditions, under which SMSr is proven, assume that the data are twice continuously Fréchet differentiable, the strict Mangasarian-Fromovitz constraint qualification is satisfied, and the second-order sufficient optimality condition holds. The obtained result extends the one known for finite-dimensional problems. Although the applicability of the result is limited to the Banach space setting (due to the twice Fréchet differentiability assumptions and the finite number of inequality constraints), the paper can be valuable due to the self-contained exposition, and provides a ground for extensions. One possible extension was recently implemented in Osmolovskii and Veliov (2021).\",\"PeriodicalId\":55209,\"journal\":{\"name\":\"Control and Cybernetics\",\"volume\":\"50 1\",\"pages\":\"457 - 471\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/candc-2021-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2021-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
On the strong metric subregularity in mathematical programming
Abstract This note presents sufficient conditions for the property of strong metric subregularity (SMSr) of the system of first order optimality conditions for a mathematical programming problem in a Banach space (the Karush-Kuhn-Tucker conditions). The constraints of the problem consist of equations in a Banach space setting and a finite number of inequalities. The conditions, under which SMSr is proven, assume that the data are twice continuously Fréchet differentiable, the strict Mangasarian-Fromovitz constraint qualification is satisfied, and the second-order sufficient optimality condition holds. The obtained result extends the one known for finite-dimensional problems. Although the applicability of the result is limited to the Banach space setting (due to the twice Fréchet differentiability assumptions and the finite number of inequality constraints), the paper can be valuable due to the self-contained exposition, and provides a ground for extensions. One possible extension was recently implemented in Osmolovskii and Veliov (2021).
期刊介绍:
The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research:
Systems and control theory:
general systems theory,
optimal cotrol,
optimization theory,
data analysis, learning, artificial intelligence,
modelling & identification,
game theory, multicriteria optimisation, decision and negotiation methods,
soft approaches: stochastic and fuzzy methods,
computer science,