论数学规划中的强度量子正则性

Q4 Engineering
N. Osmolovskii, V. Veliov
{"title":"论数学规划中的强度量子正则性","authors":"N. Osmolovskii, V. Veliov","doi":"10.2478/candc-2021-0027","DOIUrl":null,"url":null,"abstract":"Abstract This note presents sufficient conditions for the property of strong metric subregularity (SMSr) of the system of first order optimality conditions for a mathematical programming problem in a Banach space (the Karush-Kuhn-Tucker conditions). The constraints of the problem consist of equations in a Banach space setting and a finite number of inequalities. The conditions, under which SMSr is proven, assume that the data are twice continuously Fréchet differentiable, the strict Mangasarian-Fromovitz constraint qualification is satisfied, and the second-order sufficient optimality condition holds. The obtained result extends the one known for finite-dimensional problems. Although the applicability of the result is limited to the Banach space setting (due to the twice Fréchet differentiability assumptions and the finite number of inequality constraints), the paper can be valuable due to the self-contained exposition, and provides a ground for extensions. One possible extension was recently implemented in Osmolovskii and Veliov (2021).","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"50 1","pages":"457 - 471"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the strong metric subregularity in mathematical programming\",\"authors\":\"N. Osmolovskii, V. Veliov\",\"doi\":\"10.2478/candc-2021-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This note presents sufficient conditions for the property of strong metric subregularity (SMSr) of the system of first order optimality conditions for a mathematical programming problem in a Banach space (the Karush-Kuhn-Tucker conditions). The constraints of the problem consist of equations in a Banach space setting and a finite number of inequalities. The conditions, under which SMSr is proven, assume that the data are twice continuously Fréchet differentiable, the strict Mangasarian-Fromovitz constraint qualification is satisfied, and the second-order sufficient optimality condition holds. The obtained result extends the one known for finite-dimensional problems. Although the applicability of the result is limited to the Banach space setting (due to the twice Fréchet differentiability assumptions and the finite number of inequality constraints), the paper can be valuable due to the self-contained exposition, and provides a ground for extensions. One possible extension was recently implemented in Osmolovskii and Veliov (2021).\",\"PeriodicalId\":55209,\"journal\":{\"name\":\"Control and Cybernetics\",\"volume\":\"50 1\",\"pages\":\"457 - 471\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/candc-2021-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2021-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了Banach空间上数学规划问题的一阶最优性条件系统的强度量子正则性的充分条件(Karush-Kuhn-Tucker条件)。问题的约束由Banach空间中的方程和有限数量的不等式组成。在证明SMSr的条件下,假设数据是连续两次fr切微的,满足严格Mangasarian-Fromovitz约束条件,二阶充分最优性条件成立。所得结果推广了有限维问题的已知结果。虽然结果的适用性限于Banach空间设置(由于两次fr可微性假设和有限数量的不等式约束),但由于自包含的阐述,本文可以是有价值的,并为扩展提供了基础。最近在Osmolovskii和Veliov实施了一个可能的扩展(2021年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the strong metric subregularity in mathematical programming
Abstract This note presents sufficient conditions for the property of strong metric subregularity (SMSr) of the system of first order optimality conditions for a mathematical programming problem in a Banach space (the Karush-Kuhn-Tucker conditions). The constraints of the problem consist of equations in a Banach space setting and a finite number of inequalities. The conditions, under which SMSr is proven, assume that the data are twice continuously Fréchet differentiable, the strict Mangasarian-Fromovitz constraint qualification is satisfied, and the second-order sufficient optimality condition holds. The obtained result extends the one known for finite-dimensional problems. Although the applicability of the result is limited to the Banach space setting (due to the twice Fréchet differentiability assumptions and the finite number of inequality constraints), the paper can be valuable due to the self-contained exposition, and provides a ground for extensions. One possible extension was recently implemented in Osmolovskii and Veliov (2021).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control and Cybernetics
Control and Cybernetics 工程技术-计算机:控制论
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research: Systems and control theory: general systems theory, optimal cotrol, optimization theory, data analysis, learning, artificial intelligence, modelling & identification, game theory, multicriteria optimisation, decision and negotiation methods, soft approaches: stochastic and fuzzy methods, computer science,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信