利用射线追踪法估算温室不同沟距下栽培番茄作物冠层的截光量

IF 1.4 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY
Y. Ohashi, Taiki Torii, Y. Ishigami, E. Goto
{"title":"利用射线追踪法估算温室不同沟距下栽培番茄作物冠层的截光量","authors":"Y. Ohashi, Taiki Torii, Y. Ishigami, E. Goto","doi":"10.2480/agrmet.d-20-00030","DOIUrl":null,"url":null,"abstract":"We constructed 3D models of the greenhouse (168 m2) and tomato plants (plant height: 150 cm). The point cloud data of tomato plants was acquired by a 3D scanner and converted to the 3D model, which was constructed using polygons. The canopy 3D model was installed in the greenhouse 3D model. In addition, the date, time, latitude, longitude, global solar radiation, and optical properties of objects, such as plants and covering material, were used as input values to estimate the amount of solar radiation received by canopy models using the ray tracing. The amount of solar radiation received by the canopy models at different layers under different furrow distances (60-160 cm) was calculated every 1 h. The lower layer and the middle layer of tomato plants were saturated with solar radiation at furrow distances of 120 cm and 100 cm, respectively. However, the radiation received by the upper layer of tomato plants did not change across the range (60-160 cm) of investigated furrow distances. This investigation has provided a visual demonstration of the relationship between the arrangement of cultivated fruit and vegetable plants, such as tomato, in the greenhouse and the amount of solar radiation received.","PeriodicalId":56074,"journal":{"name":"Journal of Agricultural Meteorology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimation of the light interception of a cultivated tomato crop canopy under different furrow distances in a greenhouse using the ray tracing\",\"authors\":\"Y. Ohashi, Taiki Torii, Y. Ishigami, E. Goto\",\"doi\":\"10.2480/agrmet.d-20-00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We constructed 3D models of the greenhouse (168 m2) and tomato plants (plant height: 150 cm). The point cloud data of tomato plants was acquired by a 3D scanner and converted to the 3D model, which was constructed using polygons. The canopy 3D model was installed in the greenhouse 3D model. In addition, the date, time, latitude, longitude, global solar radiation, and optical properties of objects, such as plants and covering material, were used as input values to estimate the amount of solar radiation received by canopy models using the ray tracing. The amount of solar radiation received by the canopy models at different layers under different furrow distances (60-160 cm) was calculated every 1 h. The lower layer and the middle layer of tomato plants were saturated with solar radiation at furrow distances of 120 cm and 100 cm, respectively. However, the radiation received by the upper layer of tomato plants did not change across the range (60-160 cm) of investigated furrow distances. This investigation has provided a visual demonstration of the relationship between the arrangement of cultivated fruit and vegetable plants, such as tomato, in the greenhouse and the amount of solar radiation received.\",\"PeriodicalId\":56074,\"journal\":{\"name\":\"Journal of Agricultural Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2480/agrmet.d-20-00030\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Meteorology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2480/agrmet.d-20-00030","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

我们构建了温室(168 m2)和番茄植株(株高150 cm)的三维模型。利用三维扫描仪获取番茄植株的点云数据,并将其转换为多边形构建的三维模型。将雨棚三维模型安装在温室三维模型中。此外,以日期、时间、纬度、经度、全球太阳辐射以及植物和覆盖物等物体的光学特性作为输入值,利用光线追踪技术估算冠层模型接收到的太阳辐射量。每1 h计算不同沟距(60 ~ 160 cm)下不同层冠层模型的太阳辐射量。番茄植株下层和中层分别在沟距120 cm和100 cm处被太阳辐射饱和。然而,在60 ~ 160 cm的沟距范围内,番茄植株上层接收到的辐射没有变化。这项调查直观地证明了温室中栽培的水果和蔬菜植物(如番茄)的排列与接收的太阳辐射量之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of the light interception of a cultivated tomato crop canopy under different furrow distances in a greenhouse using the ray tracing
We constructed 3D models of the greenhouse (168 m2) and tomato plants (plant height: 150 cm). The point cloud data of tomato plants was acquired by a 3D scanner and converted to the 3D model, which was constructed using polygons. The canopy 3D model was installed in the greenhouse 3D model. In addition, the date, time, latitude, longitude, global solar radiation, and optical properties of objects, such as plants and covering material, were used as input values to estimate the amount of solar radiation received by canopy models using the ray tracing. The amount of solar radiation received by the canopy models at different layers under different furrow distances (60-160 cm) was calculated every 1 h. The lower layer and the middle layer of tomato plants were saturated with solar radiation at furrow distances of 120 cm and 100 cm, respectively. However, the radiation received by the upper layer of tomato plants did not change across the range (60-160 cm) of investigated furrow distances. This investigation has provided a visual demonstration of the relationship between the arrangement of cultivated fruit and vegetable plants, such as tomato, in the greenhouse and the amount of solar radiation received.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Meteorology
Journal of Agricultural Meteorology AGRICULTURE, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
2.70
自引率
7.70%
发文量
18
期刊介绍: For over 70 years, the Journal of Agricultural Meteorology has published original papers and review articles on the science of physical and biological processes in natural and managed ecosystems. Published topics include, but are not limited to, weather disasters, local climate, micrometeorology, climate change, soil environment, plant phenology, plant response to environmental change, crop growth and yield prediction, instrumentation, and environmental control across a wide range of managed ecosystems, from open fields to greenhouses and plant factories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信