冬小麦物候发育的s型和指数函数春化函数模型

IF 1.4 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY
Satoshi Kawakita, N. Ishikawa, H. Takahashi, R. Okuno, Tadashi Takahashi
{"title":"冬小麦物候发育的s型和指数函数春化函数模型","authors":"Satoshi Kawakita, N. Ishikawa, H. Takahashi, R. Okuno, Tadashi Takahashi","doi":"10.2480/agrmet.d-19-00042","DOIUrl":null,"url":null,"abstract":"Wheat is one of the world’s most important crops, and its phenological model is useful for scheduling agricultural practices such as fungicide or fertilizer application. Although various wheat phenological models have been developed throughout the world, a conventional model-mostly used for Japanese cultivars-is one wherein temperature and daylength responses are expressed as sigmoidal and exponential functions that do not have a vernalization function. Since a gradual rise in daily development rate is expressed as an increase in mean temperature in the conventional model, the model may potentially miscalculate the wheat development when used to predict the phenology of a cultivar with a strong vernalization requirement. In this study, we proposed a modified model that combines the conventional model and a vernalization function that expressed the daily vernalization rate using an inverse sigmoid function. Cultivation data for five winter wheat cultivars with relatively strong vernalization requirement were collected for several years (more than 4 years), and the model for flowering date prediction was calibrated based on the sowing date for each cultivar. Six-fold cross-validation was conducted to calibrate and validate the models. We found that the proposed model predicted the flowering date of the wheat cultivars more accurately in the median of root mean square error (RMSE: 1-2 days) than the conventional model (RMSE: 2-5 days). Although the accuracy of the model varies with the cultivar, our results indicated the advantage of using the proposed model compared with that of using the conventional model for describing winter wheat phenology. These findings can contribute to further studies on the crop models of winter wheat and would be an example of combining the vernalization function expressed by an inverse sigmoidal function with the crop model.","PeriodicalId":56074,"journal":{"name":"Journal of Agricultural Meteorology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2480/agrmet.d-19-00042","citationCount":"7","resultStr":"{\"title\":\"Winter wheat phenological development model with a vernalization function using sigmoidal and exponential functions\",\"authors\":\"Satoshi Kawakita, N. Ishikawa, H. Takahashi, R. Okuno, Tadashi Takahashi\",\"doi\":\"10.2480/agrmet.d-19-00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wheat is one of the world’s most important crops, and its phenological model is useful for scheduling agricultural practices such as fungicide or fertilizer application. Although various wheat phenological models have been developed throughout the world, a conventional model-mostly used for Japanese cultivars-is one wherein temperature and daylength responses are expressed as sigmoidal and exponential functions that do not have a vernalization function. Since a gradual rise in daily development rate is expressed as an increase in mean temperature in the conventional model, the model may potentially miscalculate the wheat development when used to predict the phenology of a cultivar with a strong vernalization requirement. In this study, we proposed a modified model that combines the conventional model and a vernalization function that expressed the daily vernalization rate using an inverse sigmoid function. Cultivation data for five winter wheat cultivars with relatively strong vernalization requirement were collected for several years (more than 4 years), and the model for flowering date prediction was calibrated based on the sowing date for each cultivar. Six-fold cross-validation was conducted to calibrate and validate the models. We found that the proposed model predicted the flowering date of the wheat cultivars more accurately in the median of root mean square error (RMSE: 1-2 days) than the conventional model (RMSE: 2-5 days). Although the accuracy of the model varies with the cultivar, our results indicated the advantage of using the proposed model compared with that of using the conventional model for describing winter wheat phenology. These findings can contribute to further studies on the crop models of winter wheat and would be an example of combining the vernalization function expressed by an inverse sigmoidal function with the crop model.\",\"PeriodicalId\":56074,\"journal\":{\"name\":\"Journal of Agricultural Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2480/agrmet.d-19-00042\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2480/agrmet.d-19-00042\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Meteorology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2480/agrmet.d-19-00042","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

小麦是世界上最重要的作物之一,它的物候模型有助于制定农业措施,如杀菌剂或肥料的施用。尽管世界各地已经开发了各种小麦物候模型,但传统的模型(主要用于日本品种)是一个温度和日照响应以s型和指数函数表示的模型,没有春化函数。由于在常规模型中,日发育速率的逐渐上升表示为平均温度的升高,因此在预测春化需求强的品种的物候时,该模型可能会对小麦的发育有潜在的错误计算。在这项研究中,我们提出了一个改进的模型,该模型结合了传统模型和春化函数,该函数使用逆s型函数表示每日春化率。对春化要求较强的5个冬小麦品种进行了数年(4年以上)的栽培数据收集,并根据各品种播期对开花期预测模型进行了标定。进行六重交叉验证以校准和验证模型。结果表明,该模型预测小麦品种花期的均方根误差中位数(RMSE为1 ~ 2天)高于常规模型(RMSE为2 ~ 5天)。虽然模型的准确性因品种而异,但我们的研究结果表明,与使用常规模型相比,使用该模型描述冬小麦物候具有优势。这些发现有助于进一步研究冬小麦作物模型,并将反s型函数表示的春化函数与作物模型结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Winter wheat phenological development model with a vernalization function using sigmoidal and exponential functions
Wheat is one of the world’s most important crops, and its phenological model is useful for scheduling agricultural practices such as fungicide or fertilizer application. Although various wheat phenological models have been developed throughout the world, a conventional model-mostly used for Japanese cultivars-is one wherein temperature and daylength responses are expressed as sigmoidal and exponential functions that do not have a vernalization function. Since a gradual rise in daily development rate is expressed as an increase in mean temperature in the conventional model, the model may potentially miscalculate the wheat development when used to predict the phenology of a cultivar with a strong vernalization requirement. In this study, we proposed a modified model that combines the conventional model and a vernalization function that expressed the daily vernalization rate using an inverse sigmoid function. Cultivation data for five winter wheat cultivars with relatively strong vernalization requirement were collected for several years (more than 4 years), and the model for flowering date prediction was calibrated based on the sowing date for each cultivar. Six-fold cross-validation was conducted to calibrate and validate the models. We found that the proposed model predicted the flowering date of the wheat cultivars more accurately in the median of root mean square error (RMSE: 1-2 days) than the conventional model (RMSE: 2-5 days). Although the accuracy of the model varies with the cultivar, our results indicated the advantage of using the proposed model compared with that of using the conventional model for describing winter wheat phenology. These findings can contribute to further studies on the crop models of winter wheat and would be an example of combining the vernalization function expressed by an inverse sigmoidal function with the crop model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Meteorology
Journal of Agricultural Meteorology AGRICULTURE, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
2.70
自引率
7.70%
发文量
18
期刊介绍: For over 70 years, the Journal of Agricultural Meteorology has published original papers and review articles on the science of physical and biological processes in natural and managed ecosystems. Published topics include, but are not limited to, weather disasters, local climate, micrometeorology, climate change, soil environment, plant phenology, plant response to environmental change, crop growth and yield prediction, instrumentation, and environmental control across a wide range of managed ecosystems, from open fields to greenhouses and plant factories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信