{"title":"Löwdin非中心对称离子的正交化与磁电耦合","authors":"A. Moskvin","doi":"10.26907/mrsej-19409","DOIUrl":null,"url":null,"abstract":"The Loewdin orthogonalization procedure being the well-known technique, particularly in quantum chemistry, however, gives rise to novel effects missed in earlier studies. Making use of the technique of irreducible tensorial operators we have developed a regular procedure for account of the orthogonalization effects. For illustration we address the emergence of a specific magnetoelectric coupling for noncentrosymmetric 3d or 4f ions.","PeriodicalId":18153,"journal":{"name":"Magnetic resonance in solids","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2014-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Löwdin orthogonalization and magnetoelectric coupling for noncentrosymmetric ions\",\"authors\":\"A. Moskvin\",\"doi\":\"10.26907/mrsej-19409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Loewdin orthogonalization procedure being the well-known technique, particularly in quantum chemistry, however, gives rise to novel effects missed in earlier studies. Making use of the technique of irreducible tensorial operators we have developed a regular procedure for account of the orthogonalization effects. For illustration we address the emergence of a specific magnetoelectric coupling for noncentrosymmetric 3d or 4f ions.\",\"PeriodicalId\":18153,\"journal\":{\"name\":\"Magnetic resonance in solids\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2014-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance in solids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26907/mrsej-19409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance in solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/mrsej-19409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
The Löwdin orthogonalization and magnetoelectric coupling for noncentrosymmetric ions
The Loewdin orthogonalization procedure being the well-known technique, particularly in quantum chemistry, however, gives rise to novel effects missed in earlier studies. Making use of the technique of irreducible tensorial operators we have developed a regular procedure for account of the orthogonalization effects. For illustration we address the emergence of a specific magnetoelectric coupling for noncentrosymmetric 3d or 4f ions.