{"title":"一般扩散反应型系统的极限模稳定性。","authors":"О. В. Капустян, Т. В. Юсипів","doi":"10.24144/2616-7700.2022.41(2).48-60","DOIUrl":null,"url":null,"abstract":"У цій статті ми розглядаємо стійкість граничних режимів для загального класу нелінійних розподілених математичних моделей, які називаються моделями реакції-дифузії. Системи реакції-дифузії природно виникають у багатьох застосуваннях. Наприклад, при математичному моделюванні в біології та у теорії передачі сигналів широко використовується модель ФітцХью–Нагумо (FitzHugh–Nagumo model), розподілений варіант якої є окремим випадком загальної системи реакції-дифузії. Досліджено проблему стійкості притягуючих множин для нескінченновимірної системи реакції-дифузії відносно обмежених зовнішніх сигналів (збурень). Функції взаємодії, а також нелінійні збурення не вважаються неперервними за Ліпшицем. Отже, ми не можемо очікувати єдиності розв’язку для відповідної початкової задачі, і ми повинні використовувати багатозначний напівгруповий підхід. Вважається, що незбурена система має глобальний атрактор, тобто мінімальну компактну рівномірно притягаючу множину. Основною метою дослідження є оцінка відхилення траєкторії збуреної системи від глобального атрактора незбуреної як функції величини зовнішніх сигналів. Таку оцінку можна отримати в рамках теорії стійкості входу до стану (ISS). У статті запропоновано новий підхід до отримання оцінок робастної стійкості атрактора у випадку багатозначного еволюційного оператора. Зокрема, доведено, що багатозначна напівгрупа, породжена слабкими розв’язками нелінійної системи типу реакції-дифузії, має властивість локальної ISS відносно атрактора незбуреної системи.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Стійкість граничних режимів для загального випадку систем типу реакція-дифузія.\",\"authors\":\"О. В. Капустян, Т. В. Юсипів\",\"doi\":\"10.24144/2616-7700.2022.41(2).48-60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"У цій статті ми розглядаємо стійкість граничних режимів для загального класу нелінійних розподілених математичних моделей, які називаються моделями реакції-дифузії. Системи реакції-дифузії природно виникають у багатьох застосуваннях. Наприклад, при математичному моделюванні в біології та у теорії передачі сигналів широко використовується модель ФітцХью–Нагумо (FitzHugh–Nagumo model), розподілений варіант якої є окремим випадком загальної системи реакції-дифузії. Досліджено проблему стійкості притягуючих множин для нескінченновимірної системи реакції-дифузії відносно обмежених зовнішніх сигналів (збурень). Функції взаємодії, а також нелінійні збурення не вважаються неперервними за Ліпшицем. Отже, ми не можемо очікувати єдиності розв’язку для відповідної початкової задачі, і ми повинні використовувати багатозначний напівгруповий підхід. Вважається, що незбурена система має глобальний атрактор, тобто мінімальну компактну рівномірно притягаючу множину. Основною метою дослідження є оцінка відхилення траєкторії збуреної системи від глобального атрактора незбуреної як функції величини зовнішніх сигналів. Таку оцінку можна отримати в рамках теорії стійкості входу до стану (ISS). У статті запропоновано новий підхід до отримання оцінок робастної стійкості атрактора у випадку багатозначного еволюційного оператора. Зокрема, доведено, що багатозначна напівгрупа, породжена слабкими розв’язками нелінійної системи типу реакції-дифузії, має властивість локальної ISS відносно атрактора незбуреної системи.\",\"PeriodicalId\":33567,\"journal\":{\"name\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24144/2616-7700.2022.41(2).48-60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2022.41(2).48-60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Стійкість граничних режимів для загального випадку систем типу реакція-дифузія.
У цій статті ми розглядаємо стійкість граничних режимів для загального класу нелінійних розподілених математичних моделей, які називаються моделями реакції-дифузії. Системи реакції-дифузії природно виникають у багатьох застосуваннях. Наприклад, при математичному моделюванні в біології та у теорії передачі сигналів широко використовується модель ФітцХью–Нагумо (FitzHugh–Nagumo model), розподілений варіант якої є окремим випадком загальної системи реакції-дифузії. Досліджено проблему стійкості притягуючих множин для нескінченновимірної системи реакції-дифузії відносно обмежених зовнішніх сигналів (збурень). Функції взаємодії, а також нелінійні збурення не вважаються неперервними за Ліпшицем. Отже, ми не можемо очікувати єдиності розв’язку для відповідної початкової задачі, і ми повинні використовувати багатозначний напівгруповий підхід. Вважається, що незбурена система має глобальний атрактор, тобто мінімальну компактну рівномірно притягаючу множину. Основною метою дослідження є оцінка відхилення траєкторії збуреної системи від глобального атрактора незбуреної як функції величини зовнішніх сигналів. Таку оцінку можна отримати в рамках теорії стійкості входу до стану (ISS). У статті запропоновано новий підхід до отримання оцінок робастної стійкості атрактора у випадку багатозначного еволюційного оператора. Зокрема, доведено, що багатозначна напівгрупа, породжена слабкими розв’язками нелінійної системи типу реакції-дифузії, має властивість локальної ISS відносно атрактора незбуреної системи.