关于非活动图像类别族的图像类型结束条件

В. М. Бондаренко, М. В. Стьопочкіна
{"title":"关于非活动图像类别族的图像类型结束条件","authors":"В. М. Бондаренко, М. В. Стьопочкіна","doi":"10.24144/2616-7700.2022.41(2).16-22","DOIUrl":null,"url":null,"abstract":"Зображення ч. в. множин (частково впорядкованих множин), введені Л. А. Назаровою і А. В. Ройтером у 1972 р., відіграють важливу роль у сучасній теорії зображень та її застосуваннях. М. М. Клейнер отримав опис ч. в. множин скінченного зображувального типу в термінах критичних ч. в . множин (мінімальних ч. в. множин нескінченного зображувального типу), а Ю. А. Дрозд довів, що ч. в. множина S (яка не містить елемента, позначеного як 0) має скінченний зображувальний тип тоді і тільки тоді, коли її квадратична форма Тітсає слабко додатною, тобто додатною на множині невід’ємних векторів (у 1972 та 1974 роках відповідно). У цій статті ми розглядаємо ситуацію (що стосується нескінченних ч. в. множин), коли головну роль відіграє не слабка додатність, а додатність квадратичної форми Тітса. Ситуація стосується дослідження категорій зображень спеціального вигляду, і в цьому випадку ми використовуємо встановлений першим автором зв'язок між квадратичними формами Тітса для частково впорядкованих множин і комутативних сагайдаків.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Про критерій скінченності зображувального типу для сімейств категорій ін'єктивних зображень\",\"authors\":\"В. М. Бондаренко, М. В. Стьопочкіна\",\"doi\":\"10.24144/2616-7700.2022.41(2).16-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Зображення ч. в. множин (частково впорядкованих множин), введені Л. А. Назаровою і А. В. Ройтером у 1972 р., відіграють важливу роль у сучасній теорії зображень та її застосуваннях. М. М. Клейнер отримав опис ч. в. множин скінченного зображувального типу в термінах критичних ч. в . множин (мінімальних ч. в. множин нескінченного зображувального типу), а Ю. А. Дрозд довів, що ч. в. множина S (яка не містить елемента, позначеного як 0) має скінченний зображувальний тип тоді і тільки тоді, коли її квадратична форма Тітсає слабко додатною, тобто додатною на множині невід’ємних векторів (у 1972 та 1974 роках відповідно). У цій статті ми розглядаємо ситуацію (що стосується нескінченних ч. в. множин), коли головну роль відіграє не слабка додатність, а додатність квадратичної форми Тітса. Ситуація стосується дослідження категорій зображень спеціального вигляду, і в цьому випадку ми використовуємо встановлений першим автором зв'язок між квадратичними формами Тітса для частково впорядкованих множин і комутативних сагайдаків.\",\"PeriodicalId\":33567,\"journal\":{\"name\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24144/2616-7700.2022.41(2).16-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2022.41(2).16-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相片v集合(部分排序的集合)输入L。A.和A。W路透社1972年报道,在当前图像理论及其应用中发挥着重要作用。MMClaire得到了关于v关键时间内完成的图像类型集v集合(无限图像类型的最小集合h)和U。A.道路证明v集合S(不包含标记为0的项)在其正方形形式Tits为弱正时且仅当其正方形形式为弱正,-其对于一组负向量是正的(分别为1972和1974)。在这篇文章中,我们看到的是一种情况(有无限个集合),其中主要作用不是弱的可加性,而是对平方形式标题的可加。这是关于研究特殊外观图像的类别,在这种情况下,我们使用的是部分排序集的Tits的平方形状和交换鞍袋之间的联系的第一作者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Про критерій скінченності зображувального типу для сімейств категорій ін'єктивних зображень
Зображення ч. в. множин (частково впорядкованих множин), введені Л. А. Назаровою і А. В. Ройтером у 1972 р., відіграють важливу роль у сучасній теорії зображень та її застосуваннях. М. М. Клейнер отримав опис ч. в. множин скінченного зображувального типу в термінах критичних ч. в . множин (мінімальних ч. в. множин нескінченного зображувального типу), а Ю. А. Дрозд довів, що ч. в. множина S (яка не містить елемента, позначеного як 0) має скінченний зображувальний тип тоді і тільки тоді, коли її квадратична форма Тітсає слабко додатною, тобто додатною на множині невід’ємних векторів (у 1972 та 1974 роках відповідно). У цій статті ми розглядаємо ситуацію (що стосується нескінченних ч. в. множин), коли головну роль відіграє не слабка додатність, а додатність квадратичної форми Тітса. Ситуація стосується дослідження категорій зображень спеціального вигляду, і в цьому випадку ми використовуємо встановлений першим автором зв'язок між квадратичними формами Тітса для частково впорядкованих множин і комутативних сагайдаків.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信