{"title":"关于非活动图像类别族的图像类型结束条件","authors":"В. М. Бондаренко, М. В. Стьопочкіна","doi":"10.24144/2616-7700.2022.41(2).16-22","DOIUrl":null,"url":null,"abstract":"Зображення ч. в. множин (частково впорядкованих множин), введені Л. А. Назаровою і А. В. Ройтером у 1972 р., відіграють важливу роль у сучасній теорії зображень та її застосуваннях. М. М. Клейнер отримав опис ч. в. множин скінченного зображувального типу в термінах критичних ч. в . множин (мінімальних ч. в. множин нескінченного зображувального типу), а Ю. А. Дрозд довів, що ч. в. множина S (яка не містить елемента, позначеного як 0) має скінченний зображувальний тип тоді і тільки тоді, коли її квадратична форма Тітсає слабко додатною, тобто додатною на множині невід’ємних векторів (у 1972 та 1974 роках відповідно). У цій статті ми розглядаємо ситуацію (що стосується нескінченних ч. в. множин), коли головну роль відіграє не слабка додатність, а додатність квадратичної форми Тітса. Ситуація стосується дослідження категорій зображень спеціального вигляду, і в цьому випадку ми використовуємо встановлений першим автором зв'язок між квадратичними формами Тітса для частково впорядкованих множин і комутативних сагайдаків.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Про критерій скінченності зображувального типу для сімейств категорій ін'єктивних зображень\",\"authors\":\"В. М. Бондаренко, М. В. Стьопочкіна\",\"doi\":\"10.24144/2616-7700.2022.41(2).16-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Зображення ч. в. множин (частково впорядкованих множин), введені Л. А. Назаровою і А. В. Ройтером у 1972 р., відіграють важливу роль у сучасній теорії зображень та її застосуваннях. М. М. Клейнер отримав опис ч. в. множин скінченного зображувального типу в термінах критичних ч. в . множин (мінімальних ч. в. множин нескінченного зображувального типу), а Ю. А. Дрозд довів, що ч. в. множина S (яка не містить елемента, позначеного як 0) має скінченний зображувальний тип тоді і тільки тоді, коли її квадратична форма Тітсає слабко додатною, тобто додатною на множині невід’ємних векторів (у 1972 та 1974 роках відповідно). У цій статті ми розглядаємо ситуацію (що стосується нескінченних ч. в. множин), коли головну роль відіграє не слабка додатність, а додатність квадратичної форми Тітса. Ситуація стосується дослідження категорій зображень спеціального вигляду, і в цьому випадку ми використовуємо встановлений першим автором зв'язок між квадратичними формами Тітса для частково впорядкованих множин і комутативних сагайдаків.\",\"PeriodicalId\":33567,\"journal\":{\"name\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24144/2616-7700.2022.41(2).16-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2022.41(2).16-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Про критерій скінченності зображувального типу для сімейств категорій ін'єктивних зображень
Зображення ч. в. множин (частково впорядкованих множин), введені Л. А. Назаровою і А. В. Ройтером у 1972 р., відіграють важливу роль у сучасній теорії зображень та її застосуваннях. М. М. Клейнер отримав опис ч. в. множин скінченного зображувального типу в термінах критичних ч. в . множин (мінімальних ч. в. множин нескінченного зображувального типу), а Ю. А. Дрозд довів, що ч. в. множина S (яка не містить елемента, позначеного як 0) має скінченний зображувальний тип тоді і тільки тоді, коли її квадратична форма Тітсає слабко додатною, тобто додатною на множині невід’ємних векторів (у 1972 та 1974 роках відповідно). У цій статті ми розглядаємо ситуацію (що стосується нескінченних ч. в. множин), коли головну роль відіграє не слабка додатність, а додатність квадратичної форми Тітса. Ситуація стосується дослідження категорій зображень спеціального вигляду, і в цьому випадку ми використовуємо встановлений першим автором зв'язок між квадратичними формами Тітса для частково впорядкованих множин і комутативних сагайдаків.