序列中心边界理论中相关率的确定

Т. В. Боярищева, М. М. Капустей, Г. І. Сливка-Тилищак, П. В. Слюсарчук
{"title":"序列中心边界理论中相关率的确定","authors":"Т. В. Боярищева, М. М. Капустей, Г. І. Сливка-Тилищак, П. В. Слюсарчук","doi":"10.24144/2616-7700.2021.38(1).22-32","DOIUrl":null,"url":null,"abstract":"Граничнi теореми теорiї ймовiрностей мають широке застосування у рiзних галу-зях науки i виробництва. Адже вони вивчають властивостi рiзних випадкових вели-чин, що формуються пiд впливом значної кiлькостi випадкових чинникiв, кожен зяких, в свою чергу, має незначний вплив на кiнцевий результат, але сумарний впливцих чинникiв є суттєвим. Задачi, якi розв’язуються в межах цiєї галузi, можна умов-но роздiлити на два типи. Першi дослiджують сам факт збiжностi суми випадковихдоданкiв, а другi вивчають швидкiсть цiєї збiжностi. Дана робота присвячена якраздругому питанню. Оцiнками швидкостi збiжностi у граничних теоремах займалосячимало дослiдникiв. Щоправда, до середини минулого столiття цi оцiнки формулюва-лися в термiнах абсолютних моментiв, що мало принаймнi два недолiки. Насамперед,iснування абсолютних моментiв є досить жорсткою умовою, що суттєво звужує коловипадкових величин, до яких можна застосувати данi оцiнки. I по-друге, оцiнки, щовиражаються через абсолютнi моменти, не враховують близькостi розподiлiв доданкiвдо граничного. Незважаючи на це, iснує велика кiлькiсть оцiнок, починаючи з нерiвно-стi Беррi – Ессеена i закiнчуючи дослiдженнями сучасних вчених, що використовуютьсаме абсолютнi моменти. Способом, що дозволив уникнути обох недолiкiв оцiнок, ста-ло використання псевдомоментiв. Псевдомомент – це числова характеристика, яка засвоєю структурою виражається через рiзницю функцiй розподiлу дослiджуваної таграничної випадкових величин. Тому у випадку рiвностi цих розподiлiв псевдомоментрiвний нулю, що дозволяє здiйснити бiльш точну оцiнку. Структура цих характери-стик може бути дуже рiзноманiтною, що дозволяє використати псевдомомент такоговигляду, який зручний саме для даної конкретної задачi. У статтi використано хара-ктеристики, аналогiчнi до тих, що введенi В. М. Золотарьовим. З їх допомогою ви-вчається швидкiсть збiжностi розподiлiв сум незалежних випадкових величин до нор-мального закону в схемi серiй. Обмеження, якi при цьому накладаються на випадковiдоданки, є не надто суворими – вимагається рiвнiсть нулю математичного сподiвання i скiнченнiсть дисперсiй кожного доданка. Натомiсть одержано оцiнки швидкостi збi-жностi, що виражаються через псевдомоменти рiзного виду. Також у роботi отриманооцiнки для характеристичних функцiй, якi теж виражаються через вказанi характе-ристики. Вони необхiднi для доведення основних результатiв, але мають i самостiйнезначення.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"38 1","pages":"22-32"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Оцiнка швидкостi збiжностi в центральнiй граничнiй теоремi для послiдовностi серiй\",\"authors\":\"Т. В. Боярищева, М. М. Капустей, Г. І. Сливка-Тилищак, П. В. Слюсарчук\",\"doi\":\"10.24144/2616-7700.2021.38(1).22-32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Граничнi теореми теорiї ймовiрностей мають широке застосування у рiзних галу-зях науки i виробництва. Адже вони вивчають властивостi рiзних випадкових вели-чин, що формуються пiд впливом значної кiлькостi випадкових чинникiв, кожен зяких, в свою чергу, має незначний вплив на кiнцевий результат, але сумарний впливцих чинникiв є суттєвим. Задачi, якi розв’язуються в межах цiєї галузi, можна умов-но роздiлити на два типи. Першi дослiджують сам факт збiжностi суми випадковихдоданкiв, а другi вивчають швидкiсть цiєї збiжностi. Дана робота присвячена якраздругому питанню. Оцiнками швидкостi збiжностi у граничних теоремах займалосячимало дослiдникiв. Щоправда, до середини минулого столiття цi оцiнки формулюва-лися в термiнах абсолютних моментiв, що мало принаймнi два недолiки. Насамперед,iснування абсолютних моментiв є досить жорсткою умовою, що суттєво звужує коловипадкових величин, до яких можна застосувати данi оцiнки. I по-друге, оцiнки, щовиражаються через абсолютнi моменти, не враховують близькостi розподiлiв доданкiвдо граничного. Незважаючи на це, iснує велика кiлькiсть оцiнок, починаючи з нерiвно-стi Беррi – Ессеена i закiнчуючи дослiдженнями сучасних вчених, що використовуютьсаме абсолютнi моменти. Способом, що дозволив уникнути обох недолiкiв оцiнок, ста-ло використання псевдомоментiв. Псевдомомент – це числова характеристика, яка засвоєю структурою виражається через рiзницю функцiй розподiлу дослiджуваної таграничної випадкових величин. Тому у випадку рiвностi цих розподiлiв псевдомоментрiвний нулю, що дозволяє здiйснити бiльш точну оцiнку. Структура цих характери-стик може бути дуже рiзноманiтною, що дозволяє використати псевдомомент такоговигляду, який зручний саме для даної конкретної задачi. У статтi використано хара-ктеристики, аналогiчнi до тих, що введенi В. М. Золотарьовим. З їх допомогою ви-вчається швидкiсть збiжностi розподiлiв сум незалежних випадкових величин до нор-мального закону в схемi серiй. Обмеження, якi при цьому накладаються на випадковiдоданки, є не надто суворими – вимагається рiвнiсть нулю математичного сподiвання i скiнченнiсть дисперсiй кожного доданка. Натомiсть одержано оцiнки швидкостi збi-жностi, що виражаються через псевдомоменти рiзного виду. Також у роботi отриманооцiнки для характеристичних функцiй, якi теж виражаються через вказанi характе-ристики. Вони необхiднi для доведення основних результатiв, але мають i самостiйнезначення.\",\"PeriodicalId\":33567,\"journal\":{\"name\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"volume\":\"38 1\",\"pages\":\"22-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24144/2616-7700.2021.38(1).22-32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2021.38(1).22-32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

概率论的边界理论广泛应用于科学和生产的各个领域。因为他们正在研究在大量随机因素的影响下形成的不同随机因素的性质,而每一个随机因素对结果的影响都很小,但累积影响因素很重要。在这个领域内解决的任务可以细分为两种类型。第一个研究了随机加法的和是相同的,第二个研究了这一点的速度。这是第二个问题。研究人员估计了边界理论的收敛速度。事实是,到上世纪中叶,这些评级是根据绝对时刻制定的,至少有两个缺点。首先,绝对矩的概念是一个相当苛刻的条件,它本质上约束了可以应用估计的随机值。其次,以绝对矩表示的估计数没有考虑到分配接近极限的情况。尽管如此,还是有很多评价,从Berry Essen的紧张开始,到对使用绝对时刻的现代科学家的研究结束。避免这两种低估的方法是使用别名。伪是一种数值特征,由于所研究的切线随机值的分布函数不同,它由自己的结构表示。因此,在这些分布的方程的情况下,一个伪度量零,可以让你做出更准确的估计。这些功能的结构可以非常多样化,允许您使用这种视图的假名,以便执行特定任务。这篇文章使用了与B中输入的特征相似的特征。M金质的他们教你我以多快的速度将独立随机值分布到级数中的正态定律中。对随机插件施加的约束并不太苛刻,需要零数学期望和无休止地分散每个插件。相反,存在通过不同物种别名表示的相关率评级。作品中还有特征函数的分数,这些分数也用特定的特征来表达。他们是产生基本结果所必需的,但他们也有自决权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Оцiнка швидкостi збiжностi в центральнiй граничнiй теоремi для послiдовностi серiй
Граничнi теореми теорiї ймовiрностей мають широке застосування у рiзних галу-зях науки i виробництва. Адже вони вивчають властивостi рiзних випадкових вели-чин, що формуються пiд впливом значної кiлькостi випадкових чинникiв, кожен зяких, в свою чергу, має незначний вплив на кiнцевий результат, але сумарний впливцих чинникiв є суттєвим. Задачi, якi розв’язуються в межах цiєї галузi, можна умов-но роздiлити на два типи. Першi дослiджують сам факт збiжностi суми випадковихдоданкiв, а другi вивчають швидкiсть цiєї збiжностi. Дана робота присвячена якраздругому питанню. Оцiнками швидкостi збiжностi у граничних теоремах займалосячимало дослiдникiв. Щоправда, до середини минулого столiття цi оцiнки формулюва-лися в термiнах абсолютних моментiв, що мало принаймнi два недолiки. Насамперед,iснування абсолютних моментiв є досить жорсткою умовою, що суттєво звужує коловипадкових величин, до яких можна застосувати данi оцiнки. I по-друге, оцiнки, щовиражаються через абсолютнi моменти, не враховують близькостi розподiлiв доданкiвдо граничного. Незважаючи на це, iснує велика кiлькiсть оцiнок, починаючи з нерiвно-стi Беррi – Ессеена i закiнчуючи дослiдженнями сучасних вчених, що використовуютьсаме абсолютнi моменти. Способом, що дозволив уникнути обох недолiкiв оцiнок, ста-ло використання псевдомоментiв. Псевдомомент – це числова характеристика, яка засвоєю структурою виражається через рiзницю функцiй розподiлу дослiджуваної таграничної випадкових величин. Тому у випадку рiвностi цих розподiлiв псевдомоментрiвний нулю, що дозволяє здiйснити бiльш точну оцiнку. Структура цих характери-стик може бути дуже рiзноманiтною, що дозволяє використати псевдомомент такоговигляду, який зручний саме для даної конкретної задачi. У статтi використано хара-ктеристики, аналогiчнi до тих, що введенi В. М. Золотарьовим. З їх допомогою ви-вчається швидкiсть збiжностi розподiлiв сум незалежних випадкових величин до нор-мального закону в схемi серiй. Обмеження, якi при цьому накладаються на випадковiдоданки, є не надто суворими – вимагається рiвнiсть нулю математичного сподiвання i скiнченнiсть дисперсiй кожного доданка. Натомiсть одержано оцiнки швидкостi збi-жностi, що виражаються через псевдомоменти рiзного виду. Також у роботi отриманооцiнки для характеристичних функцiй, якi теж виражаються через вказанi характе-ристики. Вони необхiднi для доведення основних результатiв, але мають i самостiйнезначення.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信