{"title":"基于RINA的物联网过程控制和数据感知网络性能增强观察","authors":"Bhushana Samyuel Neelam, Benjamin A. Shimray","doi":"10.24138/JCOMSS-2021-0027","DOIUrl":null,"url":null,"abstract":"Internet of things (IoT) is one of the leading technologies which spanned from the trivial consumer applications to time-critical industrial applications. The current research in IoT focuses mostly on network performance as it is experiencing bottlenecks in data communication. IoT communication preferred UDP due to the limitations of TCP hard-state handshaking procedures on throughput. Proposed work developed a prototype with IoT devices communicating on a new internet architecture i.e. recursive inter-networking architecture (RINA) which has eliminated hard-state handshaking procedures. The impact of RINA on the network performance in process control and data acquisition is observed in terms of latency variations, network jitter and throughput. The results were compared against the network performance when the proposed prototype was communicating on TCP/IP. A Comparative analysis was provided to identify the improved network performance in RINA. This prototype was implemented in closed network configurations like LAN and WLAN in RINA as well as TCP/IP.","PeriodicalId":38910,"journal":{"name":"Journal of Communications Software and Systems","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Observation of Enhanced Network Performance in IoT Process Control and Data Sensing with RINA\",\"authors\":\"Bhushana Samyuel Neelam, Benjamin A. Shimray\",\"doi\":\"10.24138/JCOMSS-2021-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of things (IoT) is one of the leading technologies which spanned from the trivial consumer applications to time-critical industrial applications. The current research in IoT focuses mostly on network performance as it is experiencing bottlenecks in data communication. IoT communication preferred UDP due to the limitations of TCP hard-state handshaking procedures on throughput. Proposed work developed a prototype with IoT devices communicating on a new internet architecture i.e. recursive inter-networking architecture (RINA) which has eliminated hard-state handshaking procedures. The impact of RINA on the network performance in process control and data acquisition is observed in terms of latency variations, network jitter and throughput. The results were compared against the network performance when the proposed prototype was communicating on TCP/IP. A Comparative analysis was provided to identify the improved network performance in RINA. This prototype was implemented in closed network configurations like LAN and WLAN in RINA as well as TCP/IP.\",\"PeriodicalId\":38910,\"journal\":{\"name\":\"Journal of Communications Software and Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications Software and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24138/JCOMSS-2021-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Software and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24138/JCOMSS-2021-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Observation of Enhanced Network Performance in IoT Process Control and Data Sensing with RINA
Internet of things (IoT) is one of the leading technologies which spanned from the trivial consumer applications to time-critical industrial applications. The current research in IoT focuses mostly on network performance as it is experiencing bottlenecks in data communication. IoT communication preferred UDP due to the limitations of TCP hard-state handshaking procedures on throughput. Proposed work developed a prototype with IoT devices communicating on a new internet architecture i.e. recursive inter-networking architecture (RINA) which has eliminated hard-state handshaking procedures. The impact of RINA on the network performance in process control and data acquisition is observed in terms of latency variations, network jitter and throughput. The results were compared against the network performance when the proposed prototype was communicating on TCP/IP. A Comparative analysis was provided to identify the improved network performance in RINA. This prototype was implemented in closed network configurations like LAN and WLAN in RINA as well as TCP/IP.