{"title":"用改进的Van der Pol模型模拟涡轮叶片叶栅在运行激励下的气动弹性不稳定性","authors":"Lukáš Pešek, P. Šnábl, C. Prasad, Y. Delanney","doi":"10.24132/acm.2023.792","DOIUrl":null,"url":null,"abstract":"The onset and spread of flutter in a turbine blade cascade are numerically studied. Due to the application of the reduced-cascade model consisting of simple elements (springs, rigid bodies, linear dampers) and aeroelastic forces introduced by the analytical Van der Pol model, it is useful to study the dangerous states of vibration of such complicated turbine parts. This study examines aeroelastic instabilities of a 10-blade cascade at running excitation that arise due to wakes flowing from the stator blades to the rotating blades. Unlike our previous work, it brings a new definition of the Van der Pol model of self-excitation that is controlled by relative inter-blade motion of neighbouring blades.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations of aeroelastic instabilities in a turbine-blade cascade by a modified Van der Pol model at running excitation\",\"authors\":\"Lukáš Pešek, P. Šnábl, C. Prasad, Y. Delanney\",\"doi\":\"10.24132/acm.2023.792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The onset and spread of flutter in a turbine blade cascade are numerically studied. Due to the application of the reduced-cascade model consisting of simple elements (springs, rigid bodies, linear dampers) and aeroelastic forces introduced by the analytical Van der Pol model, it is useful to study the dangerous states of vibration of such complicated turbine parts. This study examines aeroelastic instabilities of a 10-blade cascade at running excitation that arise due to wakes flowing from the stator blades to the rotating blades. Unlike our previous work, it brings a new definition of the Van der Pol model of self-excitation that is controlled by relative inter-blade motion of neighbouring blades.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24132/acm.2023.792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24132/acm.2023.792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
摘要
对涡轮叶片叶栅颤振的发生和扩散进行了数值研究。由于采用了由简单元件(弹簧、刚体、线性阻尼器)和解析范德波模型引入的气动弹性力组成的简化叶栅模型,有助于研究这类复杂涡轮部件的振动危险状态。本文研究了10叶片叶栅在运行激励下的气动弹性不稳定性,这种不稳定性是由静叶到动叶的尾迹流动引起的。与我们之前的工作不同,它带来了由邻近叶片的相对叶片间运动控制的自激Van der Pol模型的新定义。
Numerical simulations of aeroelastic instabilities in a turbine-blade cascade by a modified Van der Pol model at running excitation
The onset and spread of flutter in a turbine blade cascade are numerically studied. Due to the application of the reduced-cascade model consisting of simple elements (springs, rigid bodies, linear dampers) and aeroelastic forces introduced by the analytical Van der Pol model, it is useful to study the dangerous states of vibration of such complicated turbine parts. This study examines aeroelastic instabilities of a 10-blade cascade at running excitation that arise due to wakes flowing from the stator blades to the rotating blades. Unlike our previous work, it brings a new definition of the Van der Pol model of self-excitation that is controlled by relative inter-blade motion of neighbouring blades.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.