圆柱-锥形壳体在垂直和水平激励作用下的液体振荡

V. Y. Kylynnyk, D. Kriutchenko, Y. Naumenko
{"title":"圆柱-锥形壳体在垂直和水平激励作用下的液体振荡","authors":"V. Y. Kylynnyk, D. Kriutchenko, Y. Naumenko","doi":"10.26565/2304-6201-2019-43-05","DOIUrl":null,"url":null,"abstract":"Vibrations of an ideal incompressible fluid in shells of revolution have been considered. The shells of revolution under consideration include cylindrical and conical parts. It is assumed that the shell is subjected to vertical and horizontal excitations. The liquid in the shells is supposed to be an ideal and incompressible one. The fluid flow is the irrotational. Therefore the velocity potential that satisfies the Laplace equation exists. The non-penetration conditions are applied to the wetted surfaces of the shell and the kinematic and dynamic conditions on the free surface have been considered. The liquid pressure as the function of the velocity potential is defined using the Bernoulli equation. The problem of determining the fluid pressure is reduced to solving a singular integral equation. The numerical solution of the equation has been obtained by the method of discrete singularities. The method of simulating the free and forced oscillations of the fluid in the shells of revolution has been developed.","PeriodicalId":33695,"journal":{"name":"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid oscillation in a cylindrical-conical shell under the action of vertical and horizontal excitation\",\"authors\":\"V. Y. Kylynnyk, D. Kriutchenko, Y. Naumenko\",\"doi\":\"10.26565/2304-6201-2019-43-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibrations of an ideal incompressible fluid in shells of revolution have been considered. The shells of revolution under consideration include cylindrical and conical parts. It is assumed that the shell is subjected to vertical and horizontal excitations. The liquid in the shells is supposed to be an ideal and incompressible one. The fluid flow is the irrotational. Therefore the velocity potential that satisfies the Laplace equation exists. The non-penetration conditions are applied to the wetted surfaces of the shell and the kinematic and dynamic conditions on the free surface have been considered. The liquid pressure as the function of the velocity potential is defined using the Bernoulli equation. The problem of determining the fluid pressure is reduced to solving a singular integral equation. The numerical solution of the equation has been obtained by the method of discrete singularities. The method of simulating the free and forced oscillations of the fluid in the shells of revolution has been developed.\",\"PeriodicalId\":33695,\"journal\":{\"name\":\"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2304-6201-2019-43-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2304-6201-2019-43-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了理想不可压缩流体在旋转壳体中的振动。所考虑的旋转壳体包括圆柱形和圆锥形部件。假设壳受到垂直和水平的激励。壳体中的液体被认为是理想的不可压缩液体。流体的流动是无旋的。因此满足拉普拉斯方程的速度势是存在的。将非侵彻条件应用于壳体的湿表面,并考虑了自由表面的运动学和动力学条件。用伯努利方程定义了液体压强作为速度势的函数。确定流体压力的问题被简化为求解一个奇异积分方程。用离散奇异点法得到了方程的数值解。提出了一种模拟旋转壳体中流体自由振荡和强迫振荡的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liquid oscillation in a cylindrical-conical shell under the action of vertical and horizontal excitation
Vibrations of an ideal incompressible fluid in shells of revolution have been considered. The shells of revolution under consideration include cylindrical and conical parts. It is assumed that the shell is subjected to vertical and horizontal excitations. The liquid in the shells is supposed to be an ideal and incompressible one. The fluid flow is the irrotational. Therefore the velocity potential that satisfies the Laplace equation exists. The non-penetration conditions are applied to the wetted surfaces of the shell and the kinematic and dynamic conditions on the free surface have been considered. The liquid pressure as the function of the velocity potential is defined using the Bernoulli equation. The problem of determining the fluid pressure is reduced to solving a singular integral equation. The numerical solution of the equation has been obtained by the method of discrete singularities. The method of simulating the free and forced oscillations of the fluid in the shells of revolution has been developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信