一维非平稳Burgers方程数值解的计算机模拟系统

{"title":"一维非平稳Burgers方程数值解的计算机模拟系统","authors":"","doi":"10.26565/2304-6201-2019-43-02","DOIUrl":null,"url":null,"abstract":"The computer modeling system for numerical solution of the nonlinear one-dimensional non-stationary Burgers’ equation is described. The numerical solution of the Burgers’ equation is obtained by a meshless scheme using the method of partial solutions and radial basis functions. Time discretization of the one-dimensional Burgers’ equation is obtained by the generalized trapezoidal method (θ-scheme). The inverse multiquadric function is used as radial basis functions in the computer modeling system. The computer modeling system allows setting the initial conditions and boundary conditions as well as setting the source function as a coordinate- and time-dependent function for solving partial differential equation. A computer modeling system allows setting such parameters as the domain of the boundary-value problem, number of interpolation nodes, the time interval of non-stationary boundary-value problem, the time step size, the shape parameter of the radial basis function, and coefficients in the Burgers’ equation. The solution of the nonlinear one-dimensional non-stationary Burgers’ equation is visualized as a three-dimensional surface plot in the computer modeling system. The computer modeling system allows visualizing the solution of the boundary-value problem at chosen time steps as three-dimensional plots. The computational effectiveness of the computer modeling system is demonstrated by solving two benchmark problems. For solved benchmark problems, the average relative error, the average absolute error, and the maximum error have been calculated.","PeriodicalId":33695,"journal":{"name":"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computer modeling system for the numerical solution of the one-dimensional non-stationary Burgers’ equation\",\"authors\":\"\",\"doi\":\"10.26565/2304-6201-2019-43-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computer modeling system for numerical solution of the nonlinear one-dimensional non-stationary Burgers’ equation is described. The numerical solution of the Burgers’ equation is obtained by a meshless scheme using the method of partial solutions and radial basis functions. Time discretization of the one-dimensional Burgers’ equation is obtained by the generalized trapezoidal method (θ-scheme). The inverse multiquadric function is used as radial basis functions in the computer modeling system. The computer modeling system allows setting the initial conditions and boundary conditions as well as setting the source function as a coordinate- and time-dependent function for solving partial differential equation. A computer modeling system allows setting such parameters as the domain of the boundary-value problem, number of interpolation nodes, the time interval of non-stationary boundary-value problem, the time step size, the shape parameter of the radial basis function, and coefficients in the Burgers’ equation. The solution of the nonlinear one-dimensional non-stationary Burgers’ equation is visualized as a three-dimensional surface plot in the computer modeling system. The computer modeling system allows visualizing the solution of the boundary-value problem at chosen time steps as three-dimensional plots. The computational effectiveness of the computer modeling system is demonstrated by solving two benchmark problems. For solved benchmark problems, the average relative error, the average absolute error, and the maximum error have been calculated.\",\"PeriodicalId\":33695,\"journal\":{\"name\":\"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2304-6201-2019-43-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kharkivs''kogo natsional''nogo universitetu imeni VN Karazina Seriia Matematichne modeliuvannia informatsiini tekhnologiyi avtomatizovani sistemi upravlinnia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2304-6201-2019-43-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

介绍了非线性一维非平稳Burgers方程数值解的计算机模拟系统。采用部分解法和径向基函数法,采用无网格格式得到了Burgers方程的数值解。采用广义梯形法(θ-格式)得到一维Burgers方程的时间离散化。在计算机建模系统中,采用逆多重函数作为径向基函数。计算机建模系统允许设置初始条件和边界条件以及将源函数设置为与坐标和时间相关的函数来求解偏微分方程。计算机建模系统允许设置边值问题的域、插值节点数、非平稳边值问题的时间间隔、时间步长、径向基函数的形状参数和Burgers方程的系数等参数。非线性一维非平稳Burgers方程的解在计算机建模系统中被可视化为三维曲面。计算机建模系统允许在选定的时间步长将边值问题的解可视化为三维图。通过求解两个基准问题,验证了计算机建模系统的计算效率。对于已解决的基准问题,计算了平均相对误差、平均绝对误差和最大误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer modeling system for the numerical solution of the one-dimensional non-stationary Burgers’ equation
The computer modeling system for numerical solution of the nonlinear one-dimensional non-stationary Burgers’ equation is described. The numerical solution of the Burgers’ equation is obtained by a meshless scheme using the method of partial solutions and radial basis functions. Time discretization of the one-dimensional Burgers’ equation is obtained by the generalized trapezoidal method (θ-scheme). The inverse multiquadric function is used as radial basis functions in the computer modeling system. The computer modeling system allows setting the initial conditions and boundary conditions as well as setting the source function as a coordinate- and time-dependent function for solving partial differential equation. A computer modeling system allows setting such parameters as the domain of the boundary-value problem, number of interpolation nodes, the time interval of non-stationary boundary-value problem, the time step size, the shape parameter of the radial basis function, and coefficients in the Burgers’ equation. The solution of the nonlinear one-dimensional non-stationary Burgers’ equation is visualized as a three-dimensional surface plot in the computer modeling system. The computer modeling system allows visualizing the solution of the boundary-value problem at chosen time steps as three-dimensional plots. The computational effectiveness of the computer modeling system is demonstrated by solving two benchmark problems. For solved benchmark problems, the average relative error, the average absolute error, and the maximum error have been calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信