Yanwen Hu, Shoudong Li, Tingrong Zhang, Wenjing Zhou, Xiufang Wang
{"title":"基于金属条的贴片天线小型化新方法研究","authors":"Yanwen Hu, Shoudong Li, Tingrong Zhang, Wenjing Zhou, Xiufang Wang","doi":"10.2528/pierl23032902","DOIUrl":null,"url":null,"abstract":"|A new miniaturized patch antenna based on a metal strip is proposed in this paper. The antenna is designed by adding a middle metal strip layer to the substrate of a traditional rectangular patch antenna. By increasing the length of the metal strip, the working frequency of the patch antenna can be continuously reduced without signi(cid:12)cantly impacting the radiation pattern. The simulation results indicate that as the metal strip length increases from 5 mm to 25 mm, the working frequency of the patch antenna decreases from 2.39 GHz to 1.84 GHz, and its gain decreases from 6.72 dBi to 5.4 dBi. Two antenna samples with metal strip lengths of 5 mm and 20 mm are fabricated. The experimental results indicate that their working frequencies are 2.64 GHz and 2.43 GHz, respectively. And the radiation patterns of two antennas are consistent with the simulated results. All results con(cid:12)rm the effectiveness of the proposed miniaturization method.","PeriodicalId":20579,"journal":{"name":"Progress in Electromagnetics Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on a New Miniaturization Method of Patch Antenna Based on Metal Strip\",\"authors\":\"Yanwen Hu, Shoudong Li, Tingrong Zhang, Wenjing Zhou, Xiufang Wang\",\"doi\":\"10.2528/pierl23032902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"|A new miniaturized patch antenna based on a metal strip is proposed in this paper. The antenna is designed by adding a middle metal strip layer to the substrate of a traditional rectangular patch antenna. By increasing the length of the metal strip, the working frequency of the patch antenna can be continuously reduced without signi(cid:12)cantly impacting the radiation pattern. The simulation results indicate that as the metal strip length increases from 5 mm to 25 mm, the working frequency of the patch antenna decreases from 2.39 GHz to 1.84 GHz, and its gain decreases from 6.72 dBi to 5.4 dBi. Two antenna samples with metal strip lengths of 5 mm and 20 mm are fabricated. The experimental results indicate that their working frequencies are 2.64 GHz and 2.43 GHz, respectively. And the radiation patterns of two antennas are consistent with the simulated results. All results con(cid:12)rm the effectiveness of the proposed miniaturization method.\",\"PeriodicalId\":20579,\"journal\":{\"name\":\"Progress in Electromagnetics Research Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/pierl23032902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pierl23032902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Research on a New Miniaturization Method of Patch Antenna Based on Metal Strip
|A new miniaturized patch antenna based on a metal strip is proposed in this paper. The antenna is designed by adding a middle metal strip layer to the substrate of a traditional rectangular patch antenna. By increasing the length of the metal strip, the working frequency of the patch antenna can be continuously reduced without signi(cid:12)cantly impacting the radiation pattern. The simulation results indicate that as the metal strip length increases from 5 mm to 25 mm, the working frequency of the patch antenna decreases from 2.39 GHz to 1.84 GHz, and its gain decreases from 6.72 dBi to 5.4 dBi. Two antenna samples with metal strip lengths of 5 mm and 20 mm are fabricated. The experimental results indicate that their working frequencies are 2.64 GHz and 2.43 GHz, respectively. And the radiation patterns of two antennas are consistent with the simulated results. All results con(cid:12)rm the effectiveness of the proposed miniaturization method.