乙醇中甲醇含量的目视二元检测

{"title":"乙醇中甲醇含量的目视二元检测","authors":"","doi":"10.26565/2220-637x-2020-35-05","DOIUrl":null,"url":null,"abstract":"A method for control of methanol traces in rectified ethyl alcohol and alcoholic drinks based on visual binary testing using one reference sample was proposed. An indicator reaction of formaldehyde interaction (product of methanol oxidation) with chromotropic acid disodium salt was chosen for methanol screening. The conditions of indicator reaction proceeding are analogous as for the spectrophotometric technique of methanol determination: methanol was oxidized to formaldehyde with potassium permanganate in an acidic medium; the formaldehyde then reacts with chromotropic acid in the presence of hot concentrated sulfuric acid and forms a violet product (color of this product is stable for 12 hours). It was established that the absorption spectrum of the reaction product does not change on going from 96% ethanol to aqueous-ethanol solutions with a volume fraction of 40% ethanol. The maximum light absorption of the reaction product corresponded to 570 nm. All further studies were carried out in water-ethanol solutions with a volume fraction of ethanol of 40%. According to regulatory documents the normalized limiting content of methanol (clim) in ethyl alcohol of the “Lux” grade (the most common in the alcoholic industry) and alcoholic beverages is 0.01% by by volume counted upon anhydrous alcohol. The comparison sample (the solution of colored reaction product of indicator reaction) had to be less than the normilized level on the value which providing the risk of false-negative test result not more than 5%. To determination the threshold concentration of methanol in the comparison sample was applied the statistics of observation. For the aim the solution of colored product corresponding to the normalized limiting methanol concentration clim = 0.01% by volume was prepared and comparison samples with lower methanol concentrations were also prepared. The interval of unreliability was discovered with the help of observers. The frequency of detecting of the difference in the color of comparison samples and normalized sample (P(c)) changed from 0 to 1 in this interval. The value of methanol concentration 0.0072% by volume counted upon anhydrous alcohol was taken for the lower boundary of the interval and the value of methanol concentration 0.01% by volume counted upon anhydrous alcohol was chosen the upper border of the interval. This interval was divided on eight concentrations with step Dс = 0.0004% by volume. Three parallel series of solutions were prepared and 48 observations for each concentration were received. The experimental efficiency curve obtained was checked for compliance with the mathematical functions of the known distributions: normal, logistic, lognormal, exponential and Weibull distribution function using the statistical criterions c2 and Kolmogorov-Smirnov λ. The efficiency curve was described by the theoretical functions of the lognormal and Weibull distributions. Calculated at a confidence level of 0.95 estimation of the threshold concentration for the comparison sample was 0.0073% by volume fraction corresponding to anhydrous alcohol. The visual binary testing of methanol trace in alcoholic drinks was carried out. The accuracy of visual binary testing of methanol was confirmed by gas chromatography.","PeriodicalId":34181,"journal":{"name":"Visnik Kharkivs''kogo natsional''nogo universitetu Seriia ximiia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual binary testing of methanol contained in ethyl alcohol\",\"authors\":\"\",\"doi\":\"10.26565/2220-637x-2020-35-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for control of methanol traces in rectified ethyl alcohol and alcoholic drinks based on visual binary testing using one reference sample was proposed. An indicator reaction of formaldehyde interaction (product of methanol oxidation) with chromotropic acid disodium salt was chosen for methanol screening. The conditions of indicator reaction proceeding are analogous as for the spectrophotometric technique of methanol determination: methanol was oxidized to formaldehyde with potassium permanganate in an acidic medium; the formaldehyde then reacts with chromotropic acid in the presence of hot concentrated sulfuric acid and forms a violet product (color of this product is stable for 12 hours). It was established that the absorption spectrum of the reaction product does not change on going from 96% ethanol to aqueous-ethanol solutions with a volume fraction of 40% ethanol. The maximum light absorption of the reaction product corresponded to 570 nm. All further studies were carried out in water-ethanol solutions with a volume fraction of ethanol of 40%. According to regulatory documents the normalized limiting content of methanol (clim) in ethyl alcohol of the “Lux” grade (the most common in the alcoholic industry) and alcoholic beverages is 0.01% by by volume counted upon anhydrous alcohol. The comparison sample (the solution of colored reaction product of indicator reaction) had to be less than the normilized level on the value which providing the risk of false-negative test result not more than 5%. To determination the threshold concentration of methanol in the comparison sample was applied the statistics of observation. For the aim the solution of colored product corresponding to the normalized limiting methanol concentration clim = 0.01% by volume was prepared and comparison samples with lower methanol concentrations were also prepared. The interval of unreliability was discovered with the help of observers. The frequency of detecting of the difference in the color of comparison samples and normalized sample (P(c)) changed from 0 to 1 in this interval. The value of methanol concentration 0.0072% by volume counted upon anhydrous alcohol was taken for the lower boundary of the interval and the value of methanol concentration 0.01% by volume counted upon anhydrous alcohol was chosen the upper border of the interval. This interval was divided on eight concentrations with step Dс = 0.0004% by volume. Three parallel series of solutions were prepared and 48 observations for each concentration were received. The experimental efficiency curve obtained was checked for compliance with the mathematical functions of the known distributions: normal, logistic, lognormal, exponential and Weibull distribution function using the statistical criterions c2 and Kolmogorov-Smirnov λ. The efficiency curve was described by the theoretical functions of the lognormal and Weibull distributions. Calculated at a confidence level of 0.95 estimation of the threshold concentration for the comparison sample was 0.0073% by volume fraction corresponding to anhydrous alcohol. The visual binary testing of methanol trace in alcoholic drinks was carried out. The accuracy of visual binary testing of methanol was confirmed by gas chromatography.\",\"PeriodicalId\":34181,\"journal\":{\"name\":\"Visnik Kharkivs''kogo natsional''nogo universitetu Seriia ximiia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kharkivs''kogo natsional''nogo universitetu Seriia ximiia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2220-637x-2020-35-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kharkivs''kogo natsional''nogo universitetu Seriia ximiia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2220-637x-2020-35-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于视觉二值检测的精馏乙醇和酒精饮料中甲醇痕量控制方法。选择甲醇氧化产物甲醛与变色酸二钠盐相互作用的指示反应进行甲醇筛选。指示剂反应过程的条件与甲醇分光光度法测定甲醇的条件类似:在酸性介质中用高锰酸钾氧化甲醇生成甲醛;甲醛在热浓硫酸的存在下与变色酸反应,形成紫色产物(该产物的颜色在12小时内保持稳定)。结果表明,从96%乙醇到体积分数为40%乙醇的水-乙醇溶液,反应产物的吸收光谱没有变化。反应产物的最大光吸收波长为570 nm。所有进一步的研究都在乙醇体积分数为40%的水-乙醇溶液中进行。根据监管文件,“Lux”级(酒精工业中最常见的)酒精和酒精饮料中甲醇(clim)的标准限量含量按体积计算为0.01%(按无水酒精计算)。对照样品(指示剂反应的有色反应产物溶液)的值必须小于标准化水平,提供假阴性检测结果的风险不超过5%。对比较样品中甲醇的阈值浓度的测定采用了观察统计学。为此配制了归一化极限甲醇浓度(体积比)为0.01%的有色产品溶液,并配制了较低甲醇浓度的对照样品。不可靠区间是在观察者的帮助下发现的。比较样本与归一化样本颜色差异的检测频率(P(c))在此区间内由0变为1。区间的下界取无水乙醇体积计甲醇浓度为0.0072%的值,区间的上界取无水乙醇体积计甲醇浓度为0.01%的值。该区间分为8个浓度,步长dir = 0.0004%(体积)。制备了三个平行系列的溶液,每个浓度收到48个观察值。利用统计准则c2和Kolmogorov-Smirnov λ检验所得实验效率曲线是否符合已知分布的数学函数:正态分布、logistic分布、对数正态分布、指数分布和威布尔分布函数。效率曲线用对数正态分布和威布尔分布的理论函数来描述。在0.95的置信水平上计算,比较样品的阈值浓度估计为0.0073%,对应于无水酒精的体积分数。采用目视二元法测定了酒精饮料中甲醇的痕量。用气相色谱法验证了甲醇目测二元法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual binary testing of methanol contained in ethyl alcohol
A method for control of methanol traces in rectified ethyl alcohol and alcoholic drinks based on visual binary testing using one reference sample was proposed. An indicator reaction of formaldehyde interaction (product of methanol oxidation) with chromotropic acid disodium salt was chosen for methanol screening. The conditions of indicator reaction proceeding are analogous as for the spectrophotometric technique of methanol determination: methanol was oxidized to formaldehyde with potassium permanganate in an acidic medium; the formaldehyde then reacts with chromotropic acid in the presence of hot concentrated sulfuric acid and forms a violet product (color of this product is stable for 12 hours). It was established that the absorption spectrum of the reaction product does not change on going from 96% ethanol to aqueous-ethanol solutions with a volume fraction of 40% ethanol. The maximum light absorption of the reaction product corresponded to 570 nm. All further studies were carried out in water-ethanol solutions with a volume fraction of ethanol of 40%. According to regulatory documents the normalized limiting content of methanol (clim) in ethyl alcohol of the “Lux” grade (the most common in the alcoholic industry) and alcoholic beverages is 0.01% by by volume counted upon anhydrous alcohol. The comparison sample (the solution of colored reaction product of indicator reaction) had to be less than the normilized level on the value which providing the risk of false-negative test result not more than 5%. To determination the threshold concentration of methanol in the comparison sample was applied the statistics of observation. For the aim the solution of colored product corresponding to the normalized limiting methanol concentration clim = 0.01% by volume was prepared and comparison samples with lower methanol concentrations were also prepared. The interval of unreliability was discovered with the help of observers. The frequency of detecting of the difference in the color of comparison samples and normalized sample (P(c)) changed from 0 to 1 in this interval. The value of methanol concentration 0.0072% by volume counted upon anhydrous alcohol was taken for the lower boundary of the interval and the value of methanol concentration 0.01% by volume counted upon anhydrous alcohol was chosen the upper border of the interval. This interval was divided on eight concentrations with step Dс = 0.0004% by volume. Three parallel series of solutions were prepared and 48 observations for each concentration were received. The experimental efficiency curve obtained was checked for compliance with the mathematical functions of the known distributions: normal, logistic, lognormal, exponential and Weibull distribution function using the statistical criterions c2 and Kolmogorov-Smirnov λ. The efficiency curve was described by the theoretical functions of the lognormal and Weibull distributions. Calculated at a confidence level of 0.95 estimation of the threshold concentration for the comparison sample was 0.0073% by volume fraction corresponding to anhydrous alcohol. The visual binary testing of methanol trace in alcoholic drinks was carried out. The accuracy of visual binary testing of methanol was confirmed by gas chromatography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信