{"title":"新介质和标准成分样品的原子吸收和原子发射电感连接等离子体检测地层水中铅和铁","authors":"","doi":"10.26565/2220-637x-2020-34-05","DOIUrl":null,"url":null,"abstract":"An influence of SAS (Тriton Х-100) concentration and ultrasound treatment time on the value of analytical signal at atomic absorption and atomic emission with inductive connected plasma detection of analytes in strata water was studied. Maximal analytical signal at of Lead and Iron was reached at using nonionogenic SAS which let us to decrease surface tension of the analyzed solution and to increase absorptivity at analytes detection. It was shown that using of the modern sample preparation increase sensibility of atomic absorption detection of Lead in 1,5 times and Iron in 1,8 times. By the methods of atomic absorption and atomic emission with inductive connected plasma spectroscopy and using acetylacetonates of Lead and Iron as standard composition samples, that let us to increase sensitivity of the detection of analytes, contain of Lead and Iron in strata water was determined. By variation of the sample volume and by \"injected-found out\" method we have proved that systematic error is not significant. The results, obtained by two independent methods were compared according to F- and t-criteria. It was proved that dispersions are homogenous and run of the means is not sufficient and proved by random scatter. By atomic absorption method we estimated the detection limit of the analytes according to the developed methodic and show that the obtained results are lower than the same data from literature. The developed methodic, according to its metrological characteristics, is competitive at international level.","PeriodicalId":34181,"journal":{"name":"Visnik Kharkivs''kogo natsional''nogo universitetu Seriia ximiia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic absorption and atomic emission with inductive connected plasma detection of Lead and Iron in strata water using new medias and standard composition samples\",\"authors\":\"\",\"doi\":\"10.26565/2220-637x-2020-34-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An influence of SAS (Тriton Х-100) concentration and ultrasound treatment time on the value of analytical signal at atomic absorption and atomic emission with inductive connected plasma detection of analytes in strata water was studied. Maximal analytical signal at of Lead and Iron was reached at using nonionogenic SAS which let us to decrease surface tension of the analyzed solution and to increase absorptivity at analytes detection. It was shown that using of the modern sample preparation increase sensibility of atomic absorption detection of Lead in 1,5 times and Iron in 1,8 times. By the methods of atomic absorption and atomic emission with inductive connected plasma spectroscopy and using acetylacetonates of Lead and Iron as standard composition samples, that let us to increase sensitivity of the detection of analytes, contain of Lead and Iron in strata water was determined. By variation of the sample volume and by \\\"injected-found out\\\" method we have proved that systematic error is not significant. The results, obtained by two independent methods were compared according to F- and t-criteria. It was proved that dispersions are homogenous and run of the means is not sufficient and proved by random scatter. By atomic absorption method we estimated the detection limit of the analytes according to the developed methodic and show that the obtained results are lower than the same data from literature. The developed methodic, according to its metrological characteristics, is competitive at international level.\",\"PeriodicalId\":34181,\"journal\":{\"name\":\"Visnik Kharkivs''kogo natsional''nogo universitetu Seriia ximiia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kharkivs''kogo natsional''nogo universitetu Seriia ximiia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2220-637x-2020-34-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kharkivs''kogo natsional''nogo universitetu Seriia ximiia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2220-637x-2020-34-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atomic absorption and atomic emission with inductive connected plasma detection of Lead and Iron in strata water using new medias and standard composition samples
An influence of SAS (Тriton Х-100) concentration and ultrasound treatment time on the value of analytical signal at atomic absorption and atomic emission with inductive connected plasma detection of analytes in strata water was studied. Maximal analytical signal at of Lead and Iron was reached at using nonionogenic SAS which let us to decrease surface tension of the analyzed solution and to increase absorptivity at analytes detection. It was shown that using of the modern sample preparation increase sensibility of atomic absorption detection of Lead in 1,5 times and Iron in 1,8 times. By the methods of atomic absorption and atomic emission with inductive connected plasma spectroscopy and using acetylacetonates of Lead and Iron as standard composition samples, that let us to increase sensitivity of the detection of analytes, contain of Lead and Iron in strata water was determined. By variation of the sample volume and by "injected-found out" method we have proved that systematic error is not significant. The results, obtained by two independent methods were compared according to F- and t-criteria. It was proved that dispersions are homogenous and run of the means is not sufficient and proved by random scatter. By atomic absorption method we estimated the detection limit of the analytes according to the developed methodic and show that the obtained results are lower than the same data from literature. The developed methodic, according to its metrological characteristics, is competitive at international level.