{"title":"LWR4+机械手自适应控制与神经网络控制的比较:仿真研究","authors":"Łukasz Woliński","doi":"10.24425/AME.2020.131686","DOIUrl":null,"url":null,"abstract":"This paper deals with two control algorithms which utilize learning of their models’ parameters. An adaptive and artificial neural network control techniques are described and compared. Both control algorithms are implemented in MATLAB and Simulink environment, and they are used in the simulation of a postion control of the LWR 4+ manipulator subjected to unknown disturbances. The results, showing the better performance of the artificial neural network controller, are shown. Advantages and disadvantages of both controllers are discussed. The usefulness of the learning algorithms for the control of LWR 4+ robots is discussed. Preliminary experiments dealing with dynamic properties of the two LWR 4+ robots are reported.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of the adaptive and neural network control for LWR 4+ manipulators: simulation study\",\"authors\":\"Łukasz Woliński\",\"doi\":\"10.24425/AME.2020.131686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with two control algorithms which utilize learning of their models’ parameters. An adaptive and artificial neural network control techniques are described and compared. Both control algorithms are implemented in MATLAB and Simulink environment, and they are used in the simulation of a postion control of the LWR 4+ manipulator subjected to unknown disturbances. The results, showing the better performance of the artificial neural network controller, are shown. Advantages and disadvantages of both controllers are discussed. The usefulness of the learning algorithms for the control of LWR 4+ robots is discussed. Preliminary experiments dealing with dynamic properties of the two LWR 4+ robots are reported.\",\"PeriodicalId\":45083,\"journal\":{\"name\":\"Archive of Mechanical Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/AME.2020.131686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/AME.2020.131686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Comparison of the adaptive and neural network control for LWR 4+ manipulators: simulation study
This paper deals with two control algorithms which utilize learning of their models’ parameters. An adaptive and artificial neural network control techniques are described and compared. Both control algorithms are implemented in MATLAB and Simulink environment, and they are used in the simulation of a postion control of the LWR 4+ manipulator subjected to unknown disturbances. The results, showing the better performance of the artificial neural network controller, are shown. Advantages and disadvantages of both controllers are discussed. The usefulness of the learning algorithms for the control of LWR 4+ robots is discussed. Preliminary experiments dealing with dynamic properties of the two LWR 4+ robots are reported.
期刊介绍:
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.