基于有限元-模态法的极限环振荡预测

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
K. Ahmad, Shigang Wu, H. Rahman
{"title":"基于有限元-模态法的极限环振荡预测","authors":"K. Ahmad, Shigang Wu, H. Rahman","doi":"10.24425/AME.2018.125439","DOIUrl":null,"url":null,"abstract":"The central theme of this work was to analyze high aspect ratio structure having structural nonlinearity in low subsonic flow and to model nonlinear stiffness by finite element-modal approach. Total stiffness of high aspect ratio wing can be decomposed to linear and nonlinear stiffnesses. Linear stiffness is modeled by its eigenvalues and eigenvectors, while nonlinear stiffness is calculated by the method of combined Finite Element-Modal approach. The nonlinear modal stiffness is calculated by defining nonlinear static load cases first. The nonlinear stiffness in the present work is modeled in two ways, i.e., based on bending modes only and based on bending and torsion modes both. Doublet lattice method (DLM) is used for dynamic analysis which accounts for the dependency of aerodynamic forces and moments on the frequency content of dynamic motion. Minimum state rational fraction approximation (RFA) of the aerodynamic influence coefficient (AIC) matrix is used to formulate full aeroelastic state-space time domain equation. Time domain dynamics analyses show that structure behavior becomes exponentially growing at speed above the flutter speed when linear stiffness is considered, however, Limit Cycle Oscillations (LCO) is observed when linear stiffness along with nonlinear stiffness, modeled by FE-Modal approach is considered. The amplitude of LCO increases with the increase in the speed. This method is based on cantilevered configuration. Nonlinear static tests are generated while wing root chord is fixed in all degrees of freedom and it needs modification if one requires considering full aircraft. It uses dedicated commercial finite element package in conjunction with commercial aeroelastic package making the method very attractive for quick nonlinear aeroelastic analysis. It is the extension of M.Y. Harmin and J.E. Cooper method in which they used the same equations of motion and modeled geometrical nonlinearity in bending modes only. In the current work, geometrical nonlinearities in bending and in torsion modes have been considered.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limit cycle oscillation prediction based on Finite Element-Modal approach\",\"authors\":\"K. Ahmad, Shigang Wu, H. Rahman\",\"doi\":\"10.24425/AME.2018.125439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The central theme of this work was to analyze high aspect ratio structure having structural nonlinearity in low subsonic flow and to model nonlinear stiffness by finite element-modal approach. Total stiffness of high aspect ratio wing can be decomposed to linear and nonlinear stiffnesses. Linear stiffness is modeled by its eigenvalues and eigenvectors, while nonlinear stiffness is calculated by the method of combined Finite Element-Modal approach. The nonlinear modal stiffness is calculated by defining nonlinear static load cases first. The nonlinear stiffness in the present work is modeled in two ways, i.e., based on bending modes only and based on bending and torsion modes both. Doublet lattice method (DLM) is used for dynamic analysis which accounts for the dependency of aerodynamic forces and moments on the frequency content of dynamic motion. Minimum state rational fraction approximation (RFA) of the aerodynamic influence coefficient (AIC) matrix is used to formulate full aeroelastic state-space time domain equation. Time domain dynamics analyses show that structure behavior becomes exponentially growing at speed above the flutter speed when linear stiffness is considered, however, Limit Cycle Oscillations (LCO) is observed when linear stiffness along with nonlinear stiffness, modeled by FE-Modal approach is considered. The amplitude of LCO increases with the increase in the speed. This method is based on cantilevered configuration. Nonlinear static tests are generated while wing root chord is fixed in all degrees of freedom and it needs modification if one requires considering full aircraft. It uses dedicated commercial finite element package in conjunction with commercial aeroelastic package making the method very attractive for quick nonlinear aeroelastic analysis. It is the extension of M.Y. Harmin and J.E. Cooper method in which they used the same equations of motion and modeled geometrical nonlinearity in bending modes only. In the current work, geometrical nonlinearities in bending and in torsion modes have been considered.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/AME.2018.125439\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/AME.2018.125439","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本工作的中心主题是分析低亚音速流中具有结构非线性的高展弦比结构,并采用有限元-模态方法对非线性刚度进行建模。大展弦比机翼的总刚度可分解为线性刚度和非线性刚度。线性刚度采用特征值和特征向量建模,非线性刚度采用有限元-模态联合方法计算。首先通过定义非线性静载荷工况来计算非线性模态刚度。本文的非线性刚度建模分为两种方式,即仅基于弯曲模态和同时基于弯曲和扭转模态。采用双重点阵法(DLM)进行动力分析,考虑了气动力和力矩与动力运动频率的关系。采用气动影响系数(AIC)矩阵的最小状态有理分数近似(RFA)建立了全气动弹性状态-空间-时域方程。时域动力学分析表明,考虑线性刚度时,在颤振速度大于颤振速度时,结构性能呈指数增长,而考虑线性刚度和非线性刚度时,采用有限元模态方法建模时,结构会出现极限环振荡。LCO的振幅随转速的增加而增大。这种方法是基于悬臂结构。机翼根弦在各自由度固定时产生非线性静力试验,如果需要考虑整架飞机,则需要对其进行修改。该方法采用了专用的商业有限元包与商业气动弹性包相结合,使得该方法对快速的非线性气动弹性分析具有很大的吸引力。这是M.Y. Harmin和J.E. Cooper方法的推广,他们使用相同的运动方程,只在弯曲模式下模拟几何非线性。在目前的工作中,考虑了弯曲和扭转模态的几何非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit cycle oscillation prediction based on Finite Element-Modal approach
The central theme of this work was to analyze high aspect ratio structure having structural nonlinearity in low subsonic flow and to model nonlinear stiffness by finite element-modal approach. Total stiffness of high aspect ratio wing can be decomposed to linear and nonlinear stiffnesses. Linear stiffness is modeled by its eigenvalues and eigenvectors, while nonlinear stiffness is calculated by the method of combined Finite Element-Modal approach. The nonlinear modal stiffness is calculated by defining nonlinear static load cases first. The nonlinear stiffness in the present work is modeled in two ways, i.e., based on bending modes only and based on bending and torsion modes both. Doublet lattice method (DLM) is used for dynamic analysis which accounts for the dependency of aerodynamic forces and moments on the frequency content of dynamic motion. Minimum state rational fraction approximation (RFA) of the aerodynamic influence coefficient (AIC) matrix is used to formulate full aeroelastic state-space time domain equation. Time domain dynamics analyses show that structure behavior becomes exponentially growing at speed above the flutter speed when linear stiffness is considered, however, Limit Cycle Oscillations (LCO) is observed when linear stiffness along with nonlinear stiffness, modeled by FE-Modal approach is considered. The amplitude of LCO increases with the increase in the speed. This method is based on cantilevered configuration. Nonlinear static tests are generated while wing root chord is fixed in all degrees of freedom and it needs modification if one requires considering full aircraft. It uses dedicated commercial finite element package in conjunction with commercial aeroelastic package making the method very attractive for quick nonlinear aeroelastic analysis. It is the extension of M.Y. Harmin and J.E. Cooper method in which they used the same equations of motion and modeled geometrical nonlinearity in bending modes only. In the current work, geometrical nonlinearities in bending and in torsion modes have been considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信