{"title":"全氧燃烧条件下湍流氢火焰的数值研究","authors":"A. Wawrzak, A. Tyliszczak","doi":"10.24423/AOM.2298","DOIUrl":null,"url":null,"abstract":"This paper presents the results of large eddy simulation/conditional moment closure (LES-CMC) computations of a turbulent flame in oxy-combustion regimes complemented by 0D-CMC analysis. The fuel is pure hydrogen and it issues into a hot oxidiser stream which is a mixture of oxygen and water vapour. The flame is initiated by a spark, then it spreads and propagates through the domain and eventually stabilises as a lifted or attached one. The present problem offers new challenges to combustion modelling as the observed combustion process is strongly unsteady. In cases of large content of oxygen in the oxidiser stream the flame has very high temperature (≈ 3000 K) and large temperature/density variations. Nevertheless, it is shown that LES-CMC simulations are stable in such conditions and can be successfully applied to oxy-combustion studies. We analyse the dependence of the flame temperatures and lift-off height of the flames LH on the oxidiser composition and chemical kinetics. It is shown that both these factors may affect the flame behaviour. We identified the conditions in which LH exhibits a linear dependence on the oxidiser composition independently of applied chemical kinetics, and the regimes where the LH changes in a non-linear manner and strongly depends on the chemical kinetics.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"33 1","pages":"157-175"},"PeriodicalIF":1.1000,"publicationDate":"2017-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical study of a turbulent hydrogen flame in oxy-combustion regimes\",\"authors\":\"A. Wawrzak, A. Tyliszczak\",\"doi\":\"10.24423/AOM.2298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of large eddy simulation/conditional moment closure (LES-CMC) computations of a turbulent flame in oxy-combustion regimes complemented by 0D-CMC analysis. The fuel is pure hydrogen and it issues into a hot oxidiser stream which is a mixture of oxygen and water vapour. The flame is initiated by a spark, then it spreads and propagates through the domain and eventually stabilises as a lifted or attached one. The present problem offers new challenges to combustion modelling as the observed combustion process is strongly unsteady. In cases of large content of oxygen in the oxidiser stream the flame has very high temperature (≈ 3000 K) and large temperature/density variations. Nevertheless, it is shown that LES-CMC simulations are stable in such conditions and can be successfully applied to oxy-combustion studies. We analyse the dependence of the flame temperatures and lift-off height of the flames LH on the oxidiser composition and chemical kinetics. It is shown that both these factors may affect the flame behaviour. We identified the conditions in which LH exhibits a linear dependence on the oxidiser composition independently of applied chemical kinetics, and the regimes where the LH changes in a non-linear manner and strongly depends on the chemical kinetics.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":\"33 1\",\"pages\":\"157-175\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.2298\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.2298","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Numerical study of a turbulent hydrogen flame in oxy-combustion regimes
This paper presents the results of large eddy simulation/conditional moment closure (LES-CMC) computations of a turbulent flame in oxy-combustion regimes complemented by 0D-CMC analysis. The fuel is pure hydrogen and it issues into a hot oxidiser stream which is a mixture of oxygen and water vapour. The flame is initiated by a spark, then it spreads and propagates through the domain and eventually stabilises as a lifted or attached one. The present problem offers new challenges to combustion modelling as the observed combustion process is strongly unsteady. In cases of large content of oxygen in the oxidiser stream the flame has very high temperature (≈ 3000 K) and large temperature/density variations. Nevertheless, it is shown that LES-CMC simulations are stable in such conditions and can be successfully applied to oxy-combustion studies. We analyse the dependence of the flame temperatures and lift-off height of the flames LH on the oxidiser composition and chemical kinetics. It is shown that both these factors may affect the flame behaviour. We identified the conditions in which LH exhibits a linear dependence on the oxidiser composition independently of applied chemical kinetics, and the regimes where the LH changes in a non-linear manner and strongly depends on the chemical kinetics.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.