{"title":"线性弹性的分数连续体","authors":"W. Sumelka, T. Blaszczyk","doi":"10.24423/AOM.1314","DOIUrl":null,"url":null,"abstract":"Fractional continua is a generalisation of the classical continuum body. This new concept shows the application of fractional calculus in continuum mechanics. The advantage is that the obtained description is non-local. This natural non-locality is inherently a consequence of fractional derivative definition which is based on the interval, thus variates from the classical approach where the definition is given in a point. In the paper, the application of fractional continua to one-dimensional problem of linear elasticity under small deformation assumption is presented.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"66 1","pages":"147-172"},"PeriodicalIF":1.2000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Fractional continua for linear elasticity\",\"authors\":\"W. Sumelka, T. Blaszczyk\",\"doi\":\"10.24423/AOM.1314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractional continua is a generalisation of the classical continuum body. This new concept shows the application of fractional calculus in continuum mechanics. The advantage is that the obtained description is non-local. This natural non-locality is inherently a consequence of fractional derivative definition which is based on the interval, thus variates from the classical approach where the definition is given in a point. In the paper, the application of fractional continua to one-dimensional problem of linear elasticity under small deformation assumption is presented.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":\"66 1\",\"pages\":\"147-172\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.1314\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.1314","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Fractional continua is a generalisation of the classical continuum body. This new concept shows the application of fractional calculus in continuum mechanics. The advantage is that the obtained description is non-local. This natural non-locality is inherently a consequence of fractional derivative definition which is based on the interval, thus variates from the classical approach where the definition is given in a point. In the paper, the application of fractional continua to one-dimensional problem of linear elasticity under small deformation assumption is presented.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.