{"title":"日本大沼地热发电厂地热流体中沉淀二氧化硅的地球化学特征","authors":"M. Fukuyama, Feiyang Chen","doi":"10.2465/jmps.201130b","DOIUrl":null,"url":null,"abstract":"The scale precipitation is a major issue at geothermal power plants as it reduces the production rate of geothermal energy. The scale precipitates at different physical and chemical conditions in each geothermal power plant as a result from a fluid–rock interaction for the specific conditions at each plant. Thus, it is important to understand the chemical characteristics and precipitation process of the scale from geothermal fluid. The information on the process of transportation of metals and its precipitation from hydrothermal fluid in general will be useful to understand the formation of hydrothermal ore deposit. In this study, we have examined the chemical characteristics of silica scaling from the Onuma geothermal power plant at Akita Prefecture, Japan. The scale consists of mainly amorphous silica and trace amounts of smectite, kaolinite, and euhedral pyrite. Chemical composition of silica scale indicates that Fe content scale shows positive correlation with Pb, Cu, and REE. These elements probably incorporate into pyrite in silica scale. The texture of pyrite suggests that pyrite is possible to crystalize prior to the growth of amorphous silica. Silica scale gradually changes its chemical composition from the production well toward the reinjection well. Concentrations of SiO2, Fe2O3, MgO, and MnO in silica scale significantly decrease toward to the reinjection well from the production well, and those of Al2O3, LOI, and alkali and alkali earth elements (Na2O, K2O, and CaO) increase toward to the reinjection well. Most of trace elements including REE in silica scale also significantly decrease toward to the reinjection well, and furthermore HREE decreases more extensively than LREE though alkali and alkali earth elements (Be, Rb, Sr, Cs, and Ba) increase toward to the reinjection well. The change of element concentration in silica scales can be utilized to understand the physical and chemical conditions in the pipes at the geothermal power plant.","PeriodicalId":51093,"journal":{"name":"Journal of Mineralogical and Petrological Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geochemical characteristics of silica scales precipitated from the geothermal fluid at the Onuma geothermal power plant in Japan\",\"authors\":\"M. Fukuyama, Feiyang Chen\",\"doi\":\"10.2465/jmps.201130b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scale precipitation is a major issue at geothermal power plants as it reduces the production rate of geothermal energy. The scale precipitates at different physical and chemical conditions in each geothermal power plant as a result from a fluid–rock interaction for the specific conditions at each plant. Thus, it is important to understand the chemical characteristics and precipitation process of the scale from geothermal fluid. The information on the process of transportation of metals and its precipitation from hydrothermal fluid in general will be useful to understand the formation of hydrothermal ore deposit. In this study, we have examined the chemical characteristics of silica scaling from the Onuma geothermal power plant at Akita Prefecture, Japan. The scale consists of mainly amorphous silica and trace amounts of smectite, kaolinite, and euhedral pyrite. Chemical composition of silica scale indicates that Fe content scale shows positive correlation with Pb, Cu, and REE. These elements probably incorporate into pyrite in silica scale. The texture of pyrite suggests that pyrite is possible to crystalize prior to the growth of amorphous silica. Silica scale gradually changes its chemical composition from the production well toward the reinjection well. Concentrations of SiO2, Fe2O3, MgO, and MnO in silica scale significantly decrease toward to the reinjection well from the production well, and those of Al2O3, LOI, and alkali and alkali earth elements (Na2O, K2O, and CaO) increase toward to the reinjection well. Most of trace elements including REE in silica scale also significantly decrease toward to the reinjection well, and furthermore HREE decreases more extensively than LREE though alkali and alkali earth elements (Be, Rb, Sr, Cs, and Ba) increase toward to the reinjection well. The change of element concentration in silica scales can be utilized to understand the physical and chemical conditions in the pipes at the geothermal power plant.\",\"PeriodicalId\":51093,\"journal\":{\"name\":\"Journal of Mineralogical and Petrological Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mineralogical and Petrological Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2465/jmps.201130b\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mineralogical and Petrological Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2465/jmps.201130b","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINERALOGY","Score":null,"Total":0}
Geochemical characteristics of silica scales precipitated from the geothermal fluid at the Onuma geothermal power plant in Japan
The scale precipitation is a major issue at geothermal power plants as it reduces the production rate of geothermal energy. The scale precipitates at different physical and chemical conditions in each geothermal power plant as a result from a fluid–rock interaction for the specific conditions at each plant. Thus, it is important to understand the chemical characteristics and precipitation process of the scale from geothermal fluid. The information on the process of transportation of metals and its precipitation from hydrothermal fluid in general will be useful to understand the formation of hydrothermal ore deposit. In this study, we have examined the chemical characteristics of silica scaling from the Onuma geothermal power plant at Akita Prefecture, Japan. The scale consists of mainly amorphous silica and trace amounts of smectite, kaolinite, and euhedral pyrite. Chemical composition of silica scale indicates that Fe content scale shows positive correlation with Pb, Cu, and REE. These elements probably incorporate into pyrite in silica scale. The texture of pyrite suggests that pyrite is possible to crystalize prior to the growth of amorphous silica. Silica scale gradually changes its chemical composition from the production well toward the reinjection well. Concentrations of SiO2, Fe2O3, MgO, and MnO in silica scale significantly decrease toward to the reinjection well from the production well, and those of Al2O3, LOI, and alkali and alkali earth elements (Na2O, K2O, and CaO) increase toward to the reinjection well. Most of trace elements including REE in silica scale also significantly decrease toward to the reinjection well, and furthermore HREE decreases more extensively than LREE though alkali and alkali earth elements (Be, Rb, Sr, Cs, and Ba) increase toward to the reinjection well. The change of element concentration in silica scales can be utilized to understand the physical and chemical conditions in the pipes at the geothermal power plant.
期刊介绍:
The Journal of Mineralogical and Petrological Sciences (JMPS) publishes original articles, reviews and letters in the fields of mineralogy, petrology, economic geology, geochemistry, planetary materials science, and related scientific fields. As an international journal, we aim to provide worldwide diffusion for the results of research in Japan, as well as to serve as a medium with high impact factor for the global scientific communication
Given the remarkable rate at which publications have been expanding to include several fields, including planetary and earth sciences, materials science, and instrumental analysis technology, the journal aims to encourage and develop a variety of such new interdisciplinary scientific fields, to encourage the wide scope of such new fields to bloom in the future, and to contribute to the rapidly growing international scientific community.
To cope with this emerging scientific environment, in April 2000 the journal''s two parent societies, MSJ* (The Mineralogical Society of Japan) and JAMPEG* (The Japanese Association of Mineralogists, Petrologists and Economic Geologists), combined their respective journals (the Mineralogical Journal and the Journal of Mineralogy, Petrology and Economic Geology). The result of this merger was the Journal of Mineralogical and Petrological Sciences, which has a greatly expanded and enriched scope compared to its predecessors.