圆旋转的淬火和退火时间极限定理

IF 1 4区 数学 Q1 MATHEMATICS
Asterisque Pub Date : 2020-01-01 DOI:10.24033/ast.11100
D. Dolgopyat, O. Sarig
{"title":"圆旋转的淬火和退火时间极限定理","authors":"D. Dolgopyat, O. Sarig","doi":"10.24033/ast.11100","DOIUrl":null,"url":null,"abstract":"Let h(x) = {x} − 12 . We study the distribution of ∑n−1 k=0 h(x+ kα) when x is fixed, and n is sampled randomly uniformly in {1, . . . , N}, as N → ∞. Beck proved in [Bec10, Bec11] that if x = 0 and α is a quadratic irrational, then these distributions converge, after proper scaling, to the Gaussian distribution. We show that the set of α where a distributional scaling limit exists has Lebesgue measure zero, but that the following annealed limit theorem holds: Let (α, n) be chosen randomly uniformly in R/Z× {1, . . . , N}, then the distribution of ∑n−1 k=0 h(kα) converges after proper scaling as N →∞ to the Cauchy distribution.","PeriodicalId":55445,"journal":{"name":"Asterisque","volume":"415 1","pages":"59-85"},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Quenched and annealed temporal limit theorems for circle rotations\",\"authors\":\"D. Dolgopyat, O. Sarig\",\"doi\":\"10.24033/ast.11100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let h(x) = {x} − 12 . We study the distribution of ∑n−1 k=0 h(x+ kα) when x is fixed, and n is sampled randomly uniformly in {1, . . . , N}, as N → ∞. Beck proved in [Bec10, Bec11] that if x = 0 and α is a quadratic irrational, then these distributions converge, after proper scaling, to the Gaussian distribution. We show that the set of α where a distributional scaling limit exists has Lebesgue measure zero, but that the following annealed limit theorem holds: Let (α, n) be chosen randomly uniformly in R/Z× {1, . . . , N}, then the distribution of ∑n−1 k=0 h(kα) converges after proper scaling as N →∞ to the Cauchy distribution.\",\"PeriodicalId\":55445,\"journal\":{\"name\":\"Asterisque\",\"volume\":\"415 1\",\"pages\":\"59-85\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asterisque\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ast.11100\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asterisque","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.11100","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

设h(x) = {x}−12。我们研究了当x固定时∑n−1k =0 h(x+ kα)的分布,n在{1,…中随机均匀抽样。, N},表示N→∞。Beck在[Bec10, Bec11]中证明,如果x = 0且α是二次无理数,则这些分布在适当缩放后收敛于高斯分布。我们证明了存在分布标度极限的α集合的Lebesgue测度为零,但证明了下述退火极限定理成立:设(α, n)在R/ zx{1,…, N},则∑N−1 k=0 h(kα)的分布在N→∞适当缩放后收敛于柯西分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quenched and annealed temporal limit theorems for circle rotations
Let h(x) = {x} − 12 . We study the distribution of ∑n−1 k=0 h(x+ kα) when x is fixed, and n is sampled randomly uniformly in {1, . . . , N}, as N → ∞. Beck proved in [Bec10, Bec11] that if x = 0 and α is a quadratic irrational, then these distributions converge, after proper scaling, to the Gaussian distribution. We show that the set of α where a distributional scaling limit exists has Lebesgue measure zero, but that the following annealed limit theorem holds: Let (α, n) be chosen randomly uniformly in R/Z× {1, . . . , N}, then the distribution of ∑n−1 k=0 h(kα) converges after proper scaling as N →∞ to the Cauchy distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asterisque
Asterisque MATHEMATICS-
CiteScore
2.90
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: The publications part of the site of the French Mathematical Society (Société Mathématique de France - SMF) is bilingual English-French. You may visit the pages below to discover our list of journals and book collections. The institutional web site of the SMF (news, teaching activities, conference announcements...) is essentially written in French.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信