关于蒙奇-安培方程

IF 1 4区 数学 Q1 MATHEMATICS
Asterisque Pub Date : 2019-01-01 DOI:10.24033/ast.1092
Alessio FIGALLI
{"title":"关于蒙奇-安培方程","authors":"Alessio FIGALLI","doi":"10.24033/ast.1092","DOIUrl":null,"url":null,"abstract":"where Ω ⊂ R is some open set, u : Ω → R is a convex function, and the function f : Ω× R× R → R is given. In other words, the Monge-Ampère equation prescribes the product of the eigenvalues of the Hessian of u, in contrast with the “model” elliptic equation ∆u = f which prescribes their sum. As we shall explain later, the convexity of the solution u is a necessary condition to make the equation degenerate elliptic, and therefore to hope for regularity results. The goal of this note is to give first a general overview of the classical theory, and then discuss some recent important developments on this beautiful topic. For our presentation of the classical theory, we follow the survey paper [25].","PeriodicalId":55445,"journal":{"name":"Asterisque","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Monge-Ampère equation\",\"authors\":\"Alessio FIGALLI\",\"doi\":\"10.24033/ast.1092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"where Ω ⊂ R is some open set, u : Ω → R is a convex function, and the function f : Ω× R× R → R is given. In other words, the Monge-Ampère equation prescribes the product of the eigenvalues of the Hessian of u, in contrast with the “model” elliptic equation ∆u = f which prescribes their sum. As we shall explain later, the convexity of the solution u is a necessary condition to make the equation degenerate elliptic, and therefore to hope for regularity results. The goal of this note is to give first a general overview of the classical theory, and then discuss some recent important developments on this beautiful topic. For our presentation of the classical theory, we follow the survey paper [25].\",\"PeriodicalId\":55445,\"journal\":{\"name\":\"Asterisque\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asterisque\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ast.1092\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asterisque","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1092","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

其中Ω∧R为某开集,u: Ω→R为凸函数,并给出函数f: Ω× rx R→R。换句话说,monge - ampontre方程规定了u的Hessian特征值的乘积,而“模型”椭圆方程∆u = f规定了它们的和。我们将在后面解释,解u的凸性是使方程退化为椭圆的必要条件,因此希望得到正则性结果。这篇笔记的目的是首先对经典理论进行总体概述,然后讨论这个美丽话题最近的一些重要发展。对于经典理论的介绍,我们遵循调查论文[25]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Monge-Ampère equation
where Ω ⊂ R is some open set, u : Ω → R is a convex function, and the function f : Ω× R× R → R is given. In other words, the Monge-Ampère equation prescribes the product of the eigenvalues of the Hessian of u, in contrast with the “model” elliptic equation ∆u = f which prescribes their sum. As we shall explain later, the convexity of the solution u is a necessary condition to make the equation degenerate elliptic, and therefore to hope for regularity results. The goal of this note is to give first a general overview of the classical theory, and then discuss some recent important developments on this beautiful topic. For our presentation of the classical theory, we follow the survey paper [25].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asterisque
Asterisque MATHEMATICS-
CiteScore
2.90
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: The publications part of the site of the French Mathematical Society (Société Mathématique de France - SMF) is bilingual English-French. You may visit the pages below to discover our list of journals and book collections. The institutional web site of the SMF (news, teaching activities, conference announcements...) is essentially written in French.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信