倾斜模与p-正则基

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Riche, G. Williamson
{"title":"倾斜模与p-正则基","authors":"S. Riche, G. Williamson","doi":"10.24033/ast.1041","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new approach to tilting modules for reductive algebraic groups in positive characteristic. We conjecture that translation functors give an action of the (diagrammatic) Hecke category of the affine Weyl group on the principal block. Our conjecture implies character formulas for the simple and tilting modules in terms of the p-canonical basis, as well as a description of the principal block as the anti-spherical quotient of the Hecke category. We prove our conjecture for GL_n using the theory of 2-Kac-Moody actions. Finally, we prove that the diagrammatic Hecke category of a general crystallographic Coxeter group may be described in terms of parity complexes on the flag variety of the corresponding Kac-Moody group.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":"{\"title\":\"Tilting modules and the p-canonical basis\",\"authors\":\"S. Riche, G. Williamson\",\"doi\":\"10.24033/ast.1041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new approach to tilting modules for reductive algebraic groups in positive characteristic. We conjecture that translation functors give an action of the (diagrammatic) Hecke category of the affine Weyl group on the principal block. Our conjecture implies character formulas for the simple and tilting modules in terms of the p-canonical basis, as well as a description of the principal block as the anti-spherical quotient of the Hecke category. We prove our conjecture for GL_n using the theory of 2-Kac-Moody actions. Finally, we prove that the diagrammatic Hecke category of a general crystallographic Coxeter group may be described in terms of parity complexes on the flag variety of the corresponding Kac-Moody group.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ast.1041\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 131

摘要

本文提出了一种求正特征代数群的可倾模的新方法。我们推测平移函子给出仿射Weyl群的(图解)Hecke范畴在主块上的作用。我们的猜想包含了用p-正则基表示的简单和倾斜模的特征公式,以及作为Hecke范畴的反球商的主块的描述。我们用2-Kac-Moody作用理论证明了GL_n的猜想。最后,我们证明了一般晶体学Coxeter群的图解Hecke范畴可以用相应的Kac-Moody群的旗变体上的宇称配合物来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tilting modules and the p-canonical basis
In this paper we propose a new approach to tilting modules for reductive algebraic groups in positive characteristic. We conjecture that translation functors give an action of the (diagrammatic) Hecke category of the affine Weyl group on the principal block. Our conjecture implies character formulas for the simple and tilting modules in terms of the p-canonical basis, as well as a description of the principal block as the anti-spherical quotient of the Hecke category. We prove our conjecture for GL_n using the theory of 2-Kac-Moody actions. Finally, we prove that the diagrammatic Hecke category of a general crystallographic Coxeter group may be described in terms of parity complexes on the flag variety of the corresponding Kac-Moody group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信