{"title":"球形品种的周期和谐波分析","authors":"Y. Sakellaridis, Akshay Venkatesh","doi":"10.24033/ast.1040","DOIUrl":null,"url":null,"abstract":"Given a spherical variety X for a group G over a non-archimedean local field k, the Plancherel decomposition for L^2(X) should be related to \"distinguished\" Arthur parameters into a dual group closely related to that defined by Gaitsgory and Nadler. Motivated by this, we develop, under some assumptions on the spherical variety, a Plancherel formula for L^2(X) up to discrete (modulo center) spectra of its \"boundary degenerations\", certain G-varieties with more symmetries which model X at infinity. Along the way, we discuss the asymptotic theory of subrepresentations of C^{infty}(X), and establish conjectures of Ichino-Ikeda and Lapid-Mao. We finally discuss global analogues of our local conjectures, concerning the period integrals of automorphic forms over spherical subgroups.","PeriodicalId":55445,"journal":{"name":"Asterisque","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2012-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"194","resultStr":"{\"title\":\"Periods and harmonic analysis on spherical varieties\",\"authors\":\"Y. Sakellaridis, Akshay Venkatesh\",\"doi\":\"10.24033/ast.1040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a spherical variety X for a group G over a non-archimedean local field k, the Plancherel decomposition for L^2(X) should be related to \\\"distinguished\\\" Arthur parameters into a dual group closely related to that defined by Gaitsgory and Nadler. Motivated by this, we develop, under some assumptions on the spherical variety, a Plancherel formula for L^2(X) up to discrete (modulo center) spectra of its \\\"boundary degenerations\\\", certain G-varieties with more symmetries which model X at infinity. Along the way, we discuss the asymptotic theory of subrepresentations of C^{infty}(X), and establish conjectures of Ichino-Ikeda and Lapid-Mao. We finally discuss global analogues of our local conjectures, concerning the period integrals of automorphic forms over spherical subgroups.\",\"PeriodicalId\":55445,\"journal\":{\"name\":\"Asterisque\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"194\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asterisque\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ast.1040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asterisque","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Periods and harmonic analysis on spherical varieties
Given a spherical variety X for a group G over a non-archimedean local field k, the Plancherel decomposition for L^2(X) should be related to "distinguished" Arthur parameters into a dual group closely related to that defined by Gaitsgory and Nadler. Motivated by this, we develop, under some assumptions on the spherical variety, a Plancherel formula for L^2(X) up to discrete (modulo center) spectra of its "boundary degenerations", certain G-varieties with more symmetries which model X at infinity. Along the way, we discuss the asymptotic theory of subrepresentations of C^{infty}(X), and establish conjectures of Ichino-Ikeda and Lapid-Mao. We finally discuss global analogues of our local conjectures, concerning the period integrals of automorphic forms over spherical subgroups.
期刊介绍:
The publications part of the site of the French Mathematical Society (Société Mathématique de France - SMF) is bilingual English-French. You may visit the pages below to discover our list of journals and book collections. The institutional web site of the SMF (news, teaching activities, conference announcements...) is essentially written in French.