{"title":"用Fa和ANN测定UHPFRC中钢筋-水泥粘结参数变化的影响","authors":"D. Bojović, A. Terzic, D. Nikolic, K. Jankovic","doi":"10.2298/sos230420029b","DOIUrl":null,"url":null,"abstract":"The experimental study included the design and production of ultra-high-performance steel fiber-reinforced concrete (UHPFRC). The physical and mechanical properties of UHPFRC were investigated in a laboratory setting. To investigate the properties of UHPFR concrete, three types of concrete and over 70 samples were used. Following that, samples were created to test the anchors' load-bearing performance. Six concrete slabs with a total of 108 pre-installed anchor samples and six concrete slabs with 108 post-installed chemical anchor samples were created. The analysis of the test findings comprised all individual results as well as the definition of the relationship between the anchor's tensile load capacity and other parameters. To accurately determine the individual influence of the investigated factors as well as their combined impact, a factorial experiment, and artificial neural networks were used in addition to normal statistical numerical studies. It was determined that both approaches offer advantages. The results obtained show matches in certain parts. Due to the way data is processed in different ways, there are also significant differences between them.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the effects of the rebar-cement bond parameters variation in UHPFRC using Fa and ANN\",\"authors\":\"D. Bojović, A. Terzic, D. Nikolic, K. Jankovic\",\"doi\":\"10.2298/sos230420029b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experimental study included the design and production of ultra-high-performance steel fiber-reinforced concrete (UHPFRC). The physical and mechanical properties of UHPFRC were investigated in a laboratory setting. To investigate the properties of UHPFR concrete, three types of concrete and over 70 samples were used. Following that, samples were created to test the anchors' load-bearing performance. Six concrete slabs with a total of 108 pre-installed anchor samples and six concrete slabs with 108 post-installed chemical anchor samples were created. The analysis of the test findings comprised all individual results as well as the definition of the relationship between the anchor's tensile load capacity and other parameters. To accurately determine the individual influence of the investigated factors as well as their combined impact, a factorial experiment, and artificial neural networks were used in addition to normal statistical numerical studies. It was determined that both approaches offer advantages. The results obtained show matches in certain parts. Due to the way data is processed in different ways, there are also significant differences between them.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos230420029b\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos230420029b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Determination of the effects of the rebar-cement bond parameters variation in UHPFRC using Fa and ANN
The experimental study included the design and production of ultra-high-performance steel fiber-reinforced concrete (UHPFRC). The physical and mechanical properties of UHPFRC were investigated in a laboratory setting. To investigate the properties of UHPFR concrete, three types of concrete and over 70 samples were used. Following that, samples were created to test the anchors' load-bearing performance. Six concrete slabs with a total of 108 pre-installed anchor samples and six concrete slabs with 108 post-installed chemical anchor samples were created. The analysis of the test findings comprised all individual results as well as the definition of the relationship between the anchor's tensile load capacity and other parameters. To accurately determine the individual influence of the investigated factors as well as their combined impact, a factorial experiment, and artificial neural networks were used in addition to normal statistical numerical studies. It was determined that both approaches offer advantages. The results obtained show matches in certain parts. Due to the way data is processed in different ways, there are also significant differences between them.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.