陶瓷增强青铜基复合材料的显微组织、显微硬度和摩擦学性能研究

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
H. Ada, Emine Türkmen, Y. Kaplan, Elif Özçatalbaş, Ender Şatir, S. Aksöz
{"title":"陶瓷增强青铜基复合材料的显微组织、显微硬度和摩擦学性能研究","authors":"H. Ada, Emine Türkmen, Y. Kaplan, Elif Özçatalbaş, Ender Şatir, S. Aksöz","doi":"10.2298/sos230414042a","DOIUrl":null,"url":null,"abstract":"In order to obtain better mechanical properties in a bronze alloy, it is important to produce new materials by adding reinforcements and to offer these materials to the industry. In this study, bronze matrix (Cu10Sn) materials were reinforced with boron carbide (B4C) and silicon carbide (SiC) ceramic materials by using the mechanical alloying method. New composite materials were produced by powder metallurgy method by adding ceramic reinforcement (B4C and SiC) at 1, 2, 4 and 8 weight ratios to Cu10Sn alloy, which is the main matrix material. The obtained composite materials examined in terms of structural, microhardness and wear resistance. Coefficient friction, specific wear rate and volume loss rates under 5N, 10N, and 15N loads were examined for the samples produced. When the applied microhardness and wear behaviors were examined, it was generally seen that the hardness and wear behaviors were improved with the added reinforcement ratios. In line with the examinations made, based on the hardness and wear processes applied to the materials consisting of the bronze matrix of the reinforcement material, it was observed that the most appropriate results were obtained from composite materials (Alloy 4 and Alloy 8), which contain 4% B4C and SiC reinforcement.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An examination of microstructure, microhardness and tribological properties of ceramic reinforced bronze matrix composite materials\",\"authors\":\"H. Ada, Emine Türkmen, Y. Kaplan, Elif Özçatalbaş, Ender Şatir, S. Aksöz\",\"doi\":\"10.2298/sos230414042a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to obtain better mechanical properties in a bronze alloy, it is important to produce new materials by adding reinforcements and to offer these materials to the industry. In this study, bronze matrix (Cu10Sn) materials were reinforced with boron carbide (B4C) and silicon carbide (SiC) ceramic materials by using the mechanical alloying method. New composite materials were produced by powder metallurgy method by adding ceramic reinforcement (B4C and SiC) at 1, 2, 4 and 8 weight ratios to Cu10Sn alloy, which is the main matrix material. The obtained composite materials examined in terms of structural, microhardness and wear resistance. Coefficient friction, specific wear rate and volume loss rates under 5N, 10N, and 15N loads were examined for the samples produced. When the applied microhardness and wear behaviors were examined, it was generally seen that the hardness and wear behaviors were improved with the added reinforcement ratios. In line with the examinations made, based on the hardness and wear processes applied to the materials consisting of the bronze matrix of the reinforcement material, it was observed that the most appropriate results were obtained from composite materials (Alloy 4 and Alloy 8), which contain 4% B4C and SiC reinforcement.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos230414042a\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos230414042a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

为了在青铜合金中获得更好的机械性能,通过添加增强剂来生产新材料并将这些材料提供给工业是很重要的。本研究采用机械合金化方法,用碳化硼(B4C)和碳化硅(SiC)陶瓷材料增强青铜基体(Cu10Sn)材料。以Cu10Sn合金为主要基体材料,采用粉末冶金方法,分别以1、2、4、8的质量比添加陶瓷增强剂(B4C和SiC)制备了新型复合材料。对得到的复合材料进行了组织、显微硬度和耐磨性测试。测试了试样在5N、10N和15N载荷下的摩擦系数、比磨损率和体积损失率。通过对材料显微硬度和磨损性能的检测,普遍发现随着增强率的增加,材料的硬度和磨损性能都有所提高。通过对由青铜基体组成的增强材料的硬度和磨损工艺的测试,发现含有4% B4C和SiC增强材料的复合材料(Alloy 4和Alloy 8)获得了最合适的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An examination of microstructure, microhardness and tribological properties of ceramic reinforced bronze matrix composite materials
In order to obtain better mechanical properties in a bronze alloy, it is important to produce new materials by adding reinforcements and to offer these materials to the industry. In this study, bronze matrix (Cu10Sn) materials were reinforced with boron carbide (B4C) and silicon carbide (SiC) ceramic materials by using the mechanical alloying method. New composite materials were produced by powder metallurgy method by adding ceramic reinforcement (B4C and SiC) at 1, 2, 4 and 8 weight ratios to Cu10Sn alloy, which is the main matrix material. The obtained composite materials examined in terms of structural, microhardness and wear resistance. Coefficient friction, specific wear rate and volume loss rates under 5N, 10N, and 15N loads were examined for the samples produced. When the applied microhardness and wear behaviors were examined, it was generally seen that the hardness and wear behaviors were improved with the added reinforcement ratios. In line with the examinations made, based on the hardness and wear processes applied to the materials consisting of the bronze matrix of the reinforcement material, it was observed that the most appropriate results were obtained from composite materials (Alloy 4 and Alloy 8), which contain 4% B4C and SiC reinforcement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信