稀土氧化物和石墨对Fe/Cu基烧结摩擦材料力学和摩擦学性能的影响

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
K. Rajesh Kannan, R. Vaira Vignesh, M. Govindaraju, P. S. Samuel Ratna Kumar
{"title":"稀土氧化物和石墨对Fe/Cu基烧结摩擦材料力学和摩擦学性能的影响","authors":"K. Rajesh Kannan, R. Vaira Vignesh, M. Govindaraju, P. S. Samuel Ratna Kumar","doi":"10.2298/sos230306034r","DOIUrl":null,"url":null,"abstract":"Fe/Cu-based sintered friction materials are proven potential materials for heavy-duty applications. The current research explores the influence of rare earth oxide (Nd2O3) and graphite on the tribological characteristics of Fe/Cu-based friction materials. The constituents present in the friction material are Fe, Cu, Cg (1%, 3%, 5%, 7%), BaSO4, and Nd2O3 (5%). Optical microscopy and elemental mapping studies reveal the homogeneous distribution of elements in the matrix. Sintered density of the specimens showed a maximum of 70% of the theoretical density measured by Archimedes' principle. XRD analysis shows no new phase formation in all the sintered specimens. A peak microhardness result of 96 HV is obtained in specimen NG-01. The pin-on-disc tribotests are performed at an axial load of 50 N at a sliding velocity of 5.5 m/s. Specimen NG-03 with 3% graphite exhibited an optimum wear rate with a friction coefficient of 0.45. The surface morphology and elemental composition of the worn specimens are investigated. The morphological features inferred that the wear mechanism is predominantly mixed abrasive and adhesive.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of rare earth oxide and graphite on the mechanical and tribological properties of Fe/Cu based sintered friction materials\",\"authors\":\"K. Rajesh Kannan, R. Vaira Vignesh, M. Govindaraju, P. S. Samuel Ratna Kumar\",\"doi\":\"10.2298/sos230306034r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fe/Cu-based sintered friction materials are proven potential materials for heavy-duty applications. The current research explores the influence of rare earth oxide (Nd2O3) and graphite on the tribological characteristics of Fe/Cu-based friction materials. The constituents present in the friction material are Fe, Cu, Cg (1%, 3%, 5%, 7%), BaSO4, and Nd2O3 (5%). Optical microscopy and elemental mapping studies reveal the homogeneous distribution of elements in the matrix. Sintered density of the specimens showed a maximum of 70% of the theoretical density measured by Archimedes' principle. XRD analysis shows no new phase formation in all the sintered specimens. A peak microhardness result of 96 HV is obtained in specimen NG-01. The pin-on-disc tribotests are performed at an axial load of 50 N at a sliding velocity of 5.5 m/s. Specimen NG-03 with 3% graphite exhibited an optimum wear rate with a friction coefficient of 0.45. The surface morphology and elemental composition of the worn specimens are investigated. The morphological features inferred that the wear mechanism is predominantly mixed abrasive and adhesive.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos230306034r\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos230306034r","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

铁/铜基烧结摩擦材料是一种被证明具有重型应用潜力的材料。本研究探讨了稀土氧化物(Nd2O3)和石墨对Fe/ cu基摩擦材料摩擦学特性的影响。摩擦材料的主要成分为Fe、Cu、Cg(1%、3%、5%、7%)、BaSO4和Nd2O3(5%)。光学显微镜和元素映射研究揭示了元素在基体中的均匀分布。试样的烧结密度最大可达阿基米德原理测得的理论密度的70%。XRD分析表明,所有烧结试样均未形成新相。试样NG-01的显微硬度峰值为96 HV。轴向载荷为50牛,滑动速度为5.5 m/s,销盘摩擦试验进行。当石墨含量为3%时,NG-03的最佳磨损率为0.45。对磨损试样的表面形貌和元素组成进行了研究。形貌特征表明磨料与黏合剂的混合磨损机制是主要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of rare earth oxide and graphite on the mechanical and tribological properties of Fe/Cu based sintered friction materials
Fe/Cu-based sintered friction materials are proven potential materials for heavy-duty applications. The current research explores the influence of rare earth oxide (Nd2O3) and graphite on the tribological characteristics of Fe/Cu-based friction materials. The constituents present in the friction material are Fe, Cu, Cg (1%, 3%, 5%, 7%), BaSO4, and Nd2O3 (5%). Optical microscopy and elemental mapping studies reveal the homogeneous distribution of elements in the matrix. Sintered density of the specimens showed a maximum of 70% of the theoretical density measured by Archimedes' principle. XRD analysis shows no new phase formation in all the sintered specimens. A peak microhardness result of 96 HV is obtained in specimen NG-01. The pin-on-disc tribotests are performed at an axial load of 50 N at a sliding velocity of 5.5 m/s. Specimen NG-03 with 3% graphite exhibited an optimum wear rate with a friction coefficient of 0.45. The surface morphology and elemental composition of the worn specimens are investigated. The morphological features inferred that the wear mechanism is predominantly mixed abrasive and adhesive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信