{"title":"人工神经网络在不同矿物添加剂水泥砂浆性能预测中的应用","authors":"A. Terzic, Milada L. Pezo, L. Pezo","doi":"10.2298/sos2301011t","DOIUrl":null,"url":null,"abstract":"The machine learning technique for prediction and optimization of building material performances became an essential feature in the contemporary civil engineering. The Artificial Neural Network (ANN) prognosis of mortar behavior was conducted in this study. The model appraised the design and characteristics of seventeen either building or high-temperature mortars. Seven different cement types were employed. Seventeen mineral additives of primary and secondary origin were embedded in the mortar mixtures. Cluster Analysis and Principal Component Analysis designated groups of similar mortars assigning them a specific purpose based on monitored characteristics. ANN foresaw the quality of designed mortars. The impact of implemented raw materials on the mortar quality was assessed and evaluated. ANN outputs highlighted the high suitability level of anticipation, i.e., 0.999 during the training period, which is regarded appropriate enough to correctly predict the observed outputs in a wide range of processing parameters. Due to the high predictive accuracy, ANN can replace or be used in combination with standard destructive tests thereby saving the construction industry time, resources, and capital. Good performances of altered cement mortars are positive sign for widening of economical mineral additives application in building materials and making progress towards achieved carbon neutrality by reducing its emission.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of artificial neural networks in performance prediction of cement mortars with various mineral additives\",\"authors\":\"A. Terzic, Milada L. Pezo, L. Pezo\",\"doi\":\"10.2298/sos2301011t\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The machine learning technique for prediction and optimization of building material performances became an essential feature in the contemporary civil engineering. The Artificial Neural Network (ANN) prognosis of mortar behavior was conducted in this study. The model appraised the design and characteristics of seventeen either building or high-temperature mortars. Seven different cement types were employed. Seventeen mineral additives of primary and secondary origin were embedded in the mortar mixtures. Cluster Analysis and Principal Component Analysis designated groups of similar mortars assigning them a specific purpose based on monitored characteristics. ANN foresaw the quality of designed mortars. The impact of implemented raw materials on the mortar quality was assessed and evaluated. ANN outputs highlighted the high suitability level of anticipation, i.e., 0.999 during the training period, which is regarded appropriate enough to correctly predict the observed outputs in a wide range of processing parameters. Due to the high predictive accuracy, ANN can replace or be used in combination with standard destructive tests thereby saving the construction industry time, resources, and capital. Good performances of altered cement mortars are positive sign for widening of economical mineral additives application in building materials and making progress towards achieved carbon neutrality by reducing its emission.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos2301011t\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos2301011t","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Application of artificial neural networks in performance prediction of cement mortars with various mineral additives
The machine learning technique for prediction and optimization of building material performances became an essential feature in the contemporary civil engineering. The Artificial Neural Network (ANN) prognosis of mortar behavior was conducted in this study. The model appraised the design and characteristics of seventeen either building or high-temperature mortars. Seven different cement types were employed. Seventeen mineral additives of primary and secondary origin were embedded in the mortar mixtures. Cluster Analysis and Principal Component Analysis designated groups of similar mortars assigning them a specific purpose based on monitored characteristics. ANN foresaw the quality of designed mortars. The impact of implemented raw materials on the mortar quality was assessed and evaluated. ANN outputs highlighted the high suitability level of anticipation, i.e., 0.999 during the training period, which is regarded appropriate enough to correctly predict the observed outputs in a wide range of processing parameters. Due to the high predictive accuracy, ANN can replace or be used in combination with standard destructive tests thereby saving the construction industry time, resources, and capital. Good performances of altered cement mortars are positive sign for widening of economical mineral additives application in building materials and making progress towards achieved carbon neutrality by reducing its emission.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.