磷酸锗锂玻璃中NASICON相的晶体生长

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
Srdjan D. Matijašević, Vladimir Topalović, V. Savić, N. Labus, J. Nikolić, S. Zildzovic, S. Grujić
{"title":"磷酸锗锂玻璃中NASICON相的晶体生长","authors":"Srdjan D. Matijašević, Vladimir Topalović, V. Savić, N. Labus, J. Nikolić, S. Zildzovic, S. Grujić","doi":"10.2298/sos220809022m","DOIUrl":null,"url":null,"abstract":"The crystal growth rate of LiGe2(PO4)3 phase from lithium germanium-phosphate glass was studied. The glass have been homogenized using the previously established temperature-time conditions, which make it possible to remove volatile substances from the glass melt. The atomic absorption spectrophotometry (AAS) was used to determine the chemical content of the obtained glass and scanning electron microscope (SEM) were used to reveal the isothermal process of crystal growth. The crystal growth rates were determined experimentally and theoretically.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The crystal growth of NASICON phase from the lithium germanium phosphate glass\",\"authors\":\"Srdjan D. Matijašević, Vladimir Topalović, V. Savić, N. Labus, J. Nikolić, S. Zildzovic, S. Grujić\",\"doi\":\"10.2298/sos220809022m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystal growth rate of LiGe2(PO4)3 phase from lithium germanium-phosphate glass was studied. The glass have been homogenized using the previously established temperature-time conditions, which make it possible to remove volatile substances from the glass melt. The atomic absorption spectrophotometry (AAS) was used to determine the chemical content of the obtained glass and scanning electron microscope (SEM) were used to reveal the isothermal process of crystal growth. The crystal growth rates were determined experimentally and theoretically.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos220809022m\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos220809022m","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了磷酸锗锂玻璃中LiGe2(PO4)3相的晶体生长速率。使用先前建立的温度-时间条件对玻璃进行均质,这使得从玻璃熔体中去除挥发性物质成为可能。用原子吸收分光光度法(AAS)测定所得玻璃的化学成分,用扫描电镜(SEM)观察晶体生长的等温过程。通过实验和理论上确定了晶体的生长速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The crystal growth of NASICON phase from the lithium germanium phosphate glass
The crystal growth rate of LiGe2(PO4)3 phase from lithium germanium-phosphate glass was studied. The glass have been homogenized using the previously established temperature-time conditions, which make it possible to remove volatile substances from the glass melt. The atomic absorption spectrophotometry (AAS) was used to determine the chemical content of the obtained glass and scanning electron microscope (SEM) were used to reveal the isothermal process of crystal growth. The crystal growth rates were determined experimentally and theoretically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信