烧结条件对钪-铈-共掺杂氧化锆sofc微观结构、相组成及电化学性能的影响

IF 1.4 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
P. Elahi, Elizabeth Winterholler, Jude A. Horsley, Taylor D. Sparks
{"title":"烧结条件对钪-铈-共掺杂氧化锆sofc微观结构、相组成及电化学性能的影响","authors":"P. Elahi, Elizabeth Winterholler, Jude A. Horsley, Taylor D. Sparks","doi":"10.2298/sos220805009e","DOIUrl":null,"url":null,"abstract":"Samples of 6 mol%Sc2O3 ? 1 mol% CeO2 co ? doped ZrO2 were fabricated by conventional ceramic processing methods and sintered at various temperatures from 1000?C to 1650?C in air. The sintering conditions on microstructure and phase content are investigated using various characterization methods, including pycnometry, diffraction, and spectroscopy. The electrical conductivity of samples was investigated using electrochemical impedance spectroscopy (EIS). The effect of inductive load (measured from room temperature to 800?C) is discussed in low to high temperature regimes. At T < 400?C since the arc is not a complete semicircle, the high-frequency arc could be fit using a constant phase element (CPE), while by subtraction of inductive load, a good fit is achieved using a capacitor element instead of CPE. The Arrhenius conductivity plot of samples reveals that the specimen sintered at 1600?C for 6 hours exhibits the highest conductivity. The activation energy (Ea) and conductivity pre-exponential (??0) factor are calculated from a linear fit to data that decreases by the increase in sintering temperature.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of sintering condition on microstructure, phase composition, and electrochemical performance of the scandia-ceria-Co-doped zirconia for SOFCs\",\"authors\":\"P. Elahi, Elizabeth Winterholler, Jude A. Horsley, Taylor D. Sparks\",\"doi\":\"10.2298/sos220805009e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Samples of 6 mol%Sc2O3 ? 1 mol% CeO2 co ? doped ZrO2 were fabricated by conventional ceramic processing methods and sintered at various temperatures from 1000?C to 1650?C in air. The sintering conditions on microstructure and phase content are investigated using various characterization methods, including pycnometry, diffraction, and spectroscopy. The electrical conductivity of samples was investigated using electrochemical impedance spectroscopy (EIS). The effect of inductive load (measured from room temperature to 800?C) is discussed in low to high temperature regimes. At T < 400?C since the arc is not a complete semicircle, the high-frequency arc could be fit using a constant phase element (CPE), while by subtraction of inductive load, a good fit is achieved using a capacitor element instead of CPE. The Arrhenius conductivity plot of samples reveals that the specimen sintered at 1600?C for 6 hours exhibits the highest conductivity. The activation energy (Ea) and conductivity pre-exponential (??0) factor are calculated from a linear fit to data that decreases by the increase in sintering temperature.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos220805009e\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos220805009e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

6mol %Sc2O3 ?1mol % CeO2 co ?采用传统的陶瓷加工方法制备了掺杂ZrO2,并在1000?C到1650年?C在空气中。采用各种表征方法,包括体积学、衍射和光谱学,研究了烧结条件对微观结构和相含量的影响。利用电化学阻抗谱(EIS)研究了样品的电导率。感应负载的影响(测量从室温到800°C),讨论了在低到高温制度。T < 400?由于电弧不是一个完整的半圆,高频电弧可以使用恒相元件(CPE)进行适配,而通过减去感性负载,使用电容元件代替CPE实现良好的适配。样品的Arrhenius电导率图显示,试样在1600?在C下放置6小时,电导率最高。通过线性拟合计算活化能(Ea)和电导率指数前因子(0),该因子随烧结温度的升高而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of sintering condition on microstructure, phase composition, and electrochemical performance of the scandia-ceria-Co-doped zirconia for SOFCs
Samples of 6 mol%Sc2O3 ? 1 mol% CeO2 co ? doped ZrO2 were fabricated by conventional ceramic processing methods and sintered at various temperatures from 1000?C to 1650?C in air. The sintering conditions on microstructure and phase content are investigated using various characterization methods, including pycnometry, diffraction, and spectroscopy. The electrical conductivity of samples was investigated using electrochemical impedance spectroscopy (EIS). The effect of inductive load (measured from room temperature to 800?C) is discussed in low to high temperature regimes. At T < 400?C since the arc is not a complete semicircle, the high-frequency arc could be fit using a constant phase element (CPE), while by subtraction of inductive load, a good fit is achieved using a capacitor element instead of CPE. The Arrhenius conductivity plot of samples reveals that the specimen sintered at 1600?C for 6 hours exhibits the highest conductivity. The activation energy (Ea) and conductivity pre-exponential (??0) factor are calculated from a linear fit to data that decreases by the increase in sintering temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Sintering
Science of Sintering 工程技术-材料科学:硅酸盐
CiteScore
2.50
自引率
46.70%
发文量
20
审稿时长
3.3 months
期刊介绍: Science of Sintering is a unique journal in the field of science and technology of sintering. Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published. Science of Sintering journal is published four times a year. Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信