M. Nenadovic, M. Ivanović, Danilo Kisić, N. Bundaleski, V. Pavlović, Sanja Knežević, Ljiljana M. Kljajević
{"title":"地聚合物凝胶的物理化学性质随NaOH浓度的变化","authors":"M. Nenadovic, M. Ivanović, Danilo Kisić, N. Bundaleski, V. Pavlović, Sanja Knežević, Ljiljana M. Kljajević","doi":"10.2298/sos220624020n","DOIUrl":null,"url":null,"abstract":"In the present paper, polymerization of alkali activated metakaolin (MK) and its structural changing, using 2M NaOH, 8M NaOH, and 16M NaOH solutions were followed by means of X-ray photoelectron spectroscopy (XPS), Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy and Scanning electron microscopy (SEM). XPS analysis revealed that changing of NaOH concentration did not affect the types of formed bonds in the material. At the same time, the amount of sodium and aluminum increased with the NaOH molarity. The latter steps could be especially interesting because it may indicate the possibility of 'dosing' the amount of Al incorporated by changing the NaOH concentration in the solution. DRIFT analysis revealed that the absorption band for AlIV located at 800 cm-1 is shifted towards the smaller values. Changing the concentration of NaOH, the chemical content did not change, but the structural changes are observed. Raman spectroscopy detected that the most dominant peaks at ?400 cm-1 and 519 cm-1 originate from Si-O-Al and Si-O-Si bending modes. With increasing the NaOH concentration, peaks at 1019-1060 cm-1 become more prominent as a result of polymerization. Both analyzes (DRIFT and Raman) confirmed the presence of quartz. SEM analysis showed that different structures are created by changing the concentration of NaOH.","PeriodicalId":21592,"journal":{"name":"Science of Sintering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the physicochemical properties of geopolymer gels as a function of NaOH concentration\",\"authors\":\"M. Nenadovic, M. Ivanović, Danilo Kisić, N. Bundaleski, V. Pavlović, Sanja Knežević, Ljiljana M. Kljajević\",\"doi\":\"10.2298/sos220624020n\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, polymerization of alkali activated metakaolin (MK) and its structural changing, using 2M NaOH, 8M NaOH, and 16M NaOH solutions were followed by means of X-ray photoelectron spectroscopy (XPS), Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy and Scanning electron microscopy (SEM). XPS analysis revealed that changing of NaOH concentration did not affect the types of formed bonds in the material. At the same time, the amount of sodium and aluminum increased with the NaOH molarity. The latter steps could be especially interesting because it may indicate the possibility of 'dosing' the amount of Al incorporated by changing the NaOH concentration in the solution. DRIFT analysis revealed that the absorption band for AlIV located at 800 cm-1 is shifted towards the smaller values. Changing the concentration of NaOH, the chemical content did not change, but the structural changes are observed. Raman spectroscopy detected that the most dominant peaks at ?400 cm-1 and 519 cm-1 originate from Si-O-Al and Si-O-Si bending modes. With increasing the NaOH concentration, peaks at 1019-1060 cm-1 become more prominent as a result of polymerization. Both analyzes (DRIFT and Raman) confirmed the presence of quartz. SEM analysis showed that different structures are created by changing the concentration of NaOH.\",\"PeriodicalId\":21592,\"journal\":{\"name\":\"Science of Sintering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Sintering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/sos220624020n\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Sintering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/sos220624020n","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Changes in the physicochemical properties of geopolymer gels as a function of NaOH concentration
In the present paper, polymerization of alkali activated metakaolin (MK) and its structural changing, using 2M NaOH, 8M NaOH, and 16M NaOH solutions were followed by means of X-ray photoelectron spectroscopy (XPS), Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy and Scanning electron microscopy (SEM). XPS analysis revealed that changing of NaOH concentration did not affect the types of formed bonds in the material. At the same time, the amount of sodium and aluminum increased with the NaOH molarity. The latter steps could be especially interesting because it may indicate the possibility of 'dosing' the amount of Al incorporated by changing the NaOH concentration in the solution. DRIFT analysis revealed that the absorption band for AlIV located at 800 cm-1 is shifted towards the smaller values. Changing the concentration of NaOH, the chemical content did not change, but the structural changes are observed. Raman spectroscopy detected that the most dominant peaks at ?400 cm-1 and 519 cm-1 originate from Si-O-Al and Si-O-Si bending modes. With increasing the NaOH concentration, peaks at 1019-1060 cm-1 become more prominent as a result of polymerization. Both analyzes (DRIFT and Raman) confirmed the presence of quartz. SEM analysis showed that different structures are created by changing the concentration of NaOH.
期刊介绍:
Science of Sintering is a unique journal in the field of science and technology of sintering.
Science of Sintering publishes papers on all aspects of theoretical and experimental studies, which can contribute to the better understanding of the behavior of powders and similar materials during consolidation processes. Emphasis is laid on those aspects of the science of materials that are concerned with the thermodynamics, kinetics and mechanism of sintering and related processes. In accordance with the significance of disperse materials for the sintering technology, papers dealing with the question of ultradisperse powders, tribochemical activation and catalysis are also published.
Science of Sintering journal is published four times a year.
Types of contribution: Original research papers, Review articles, Letters to Editor, Book reviews.