考虑流固耦合效应的罕见地震作用下径向钢闸门动力响应特性研究

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY
S. Shi, Y. Han, K. Hu, Yanlin Zhou, T. Hu, Y. Lou, J. Wang, T. Hou
{"title":"考虑流固耦合效应的罕见地震作用下径向钢闸门动力响应特性研究","authors":"S. Shi, Y. Han, K. Hu, Yanlin Zhou, T. Hu, Y. Lou, J. Wang, T. Hou","doi":"10.23967/j.rimni.2023.04.004","DOIUrl":null,"url":null,"abstract":"The water resources in southwest China is abundant and the seismicity is strong, so it is necessary to study the dynamic response and safety of hydraulic structures under rare earthquake. Taking a typical radial steel gate as an example, a three-dimensional numerical model considering the interaction between water and gate during the earthquake is established. The accuracy and applicability of the model are verified by comparing with the measured results of the dynamic response of Zipingpu dam during the Wenchuan earthquake. Thereafter, the dynamic displacement and stress, and resonance frequency of the radial gate under the rare earthquake of two wave types are analyzed. The water-structure coupling effect has a great influence on the seismic dynamic response of the radial steel gate. The calculated result of the dynamic response of the gate considering the fluid-structure coupling effect is significantly larger than that of the specification, and the maximum ratio of the two is more than 2.27 times. Under the action of EI wave, the peak value of dynamic stress response is at the bottom of the panel, and the maximum value of resonance frequency (about49.13 Hz) is located in the middle and lower part of the panel. Under the action of far-field wave, the peak area of dynamic displacement response of the gate is basically the same as that under the action of EI wave, while the maximum value of some measuring points is only half of the maximum value under the action of EI wave. However, the resonance frequency is significantly greater than that of EI wave, the maximum value reaches 65.24 Hz, which appears at the top of the gate. The dynamic response of the gate structure caused by two different wave types of earthquakes is not completely consistent. The comprehensive consideration of different wave types is of significance for the structural design and safety evaluation of the radial steel gate in the earthquake-prone areas.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on dynamic response characteristics of radial steel gate under rare earthquake considering fluid structure coupling effect\",\"authors\":\"S. Shi, Y. Han, K. Hu, Yanlin Zhou, T. Hu, Y. Lou, J. Wang, T. Hou\",\"doi\":\"10.23967/j.rimni.2023.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The water resources in southwest China is abundant and the seismicity is strong, so it is necessary to study the dynamic response and safety of hydraulic structures under rare earthquake. Taking a typical radial steel gate as an example, a three-dimensional numerical model considering the interaction between water and gate during the earthquake is established. The accuracy and applicability of the model are verified by comparing with the measured results of the dynamic response of Zipingpu dam during the Wenchuan earthquake. Thereafter, the dynamic displacement and stress, and resonance frequency of the radial gate under the rare earthquake of two wave types are analyzed. The water-structure coupling effect has a great influence on the seismic dynamic response of the radial steel gate. The calculated result of the dynamic response of the gate considering the fluid-structure coupling effect is significantly larger than that of the specification, and the maximum ratio of the two is more than 2.27 times. Under the action of EI wave, the peak value of dynamic stress response is at the bottom of the panel, and the maximum value of resonance frequency (about49.13 Hz) is located in the middle and lower part of the panel. Under the action of far-field wave, the peak area of dynamic displacement response of the gate is basically the same as that under the action of EI wave, while the maximum value of some measuring points is only half of the maximum value under the action of EI wave. However, the resonance frequency is significantly greater than that of EI wave, the maximum value reaches 65.24 Hz, which appears at the top of the gate. The dynamic response of the gate structure caused by two different wave types of earthquakes is not completely consistent. The comprehensive consideration of different wave types is of significance for the structural design and safety evaluation of the radial steel gate in the earthquake-prone areas.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2023.04.004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2023.04.004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

西南地区水资源丰富,地震活动性强,因此有必要研究罕见地震作用下水工建筑物的动力响应和安全性。以某典型径向钢闸门为例,建立了考虑地震作用下水与闸门相互作用的三维数值模型。通过与紫坪铺大坝在汶川地震中动力响应实测结果的对比,验证了该模型的准确性和适用性。在此基础上,分析了两种波型罕见地震作用下径向闸门的动位移、动应力和共振频率。水-结构耦合效应对径向钢闸门的地震动力响应有很大影响。考虑流固耦合效应的闸门动力响应计算结果明显大于规格,两者的最大比值大于2.27倍。在EI波的作用下,面板的动应力响应峰值位于面板的底部,共振频率最大值(约49.13 Hz)位于面板的中下部。在远场波作用下,栅极动态位移响应的峰值面积与EI波作用下的峰值面积基本一致,部分测点的最大值仅为EI波作用下最大值的一半。然而,共振频率明显大于EI波,最大值达到65.24 Hz,出现在栅极顶部。两种不同波型地震作用下闸门结构的动力响应不完全一致。综合考虑不同波型对地震易发区径向钢闸门的结构设计和安全性评价具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on dynamic response characteristics of radial steel gate under rare earthquake considering fluid structure coupling effect
The water resources in southwest China is abundant and the seismicity is strong, so it is necessary to study the dynamic response and safety of hydraulic structures under rare earthquake. Taking a typical radial steel gate as an example, a three-dimensional numerical model considering the interaction between water and gate during the earthquake is established. The accuracy and applicability of the model are verified by comparing with the measured results of the dynamic response of Zipingpu dam during the Wenchuan earthquake. Thereafter, the dynamic displacement and stress, and resonance frequency of the radial gate under the rare earthquake of two wave types are analyzed. The water-structure coupling effect has a great influence on the seismic dynamic response of the radial steel gate. The calculated result of the dynamic response of the gate considering the fluid-structure coupling effect is significantly larger than that of the specification, and the maximum ratio of the two is more than 2.27 times. Under the action of EI wave, the peak value of dynamic stress response is at the bottom of the panel, and the maximum value of resonance frequency (about49.13 Hz) is located in the middle and lower part of the panel. Under the action of far-field wave, the peak area of dynamic displacement response of the gate is basically the same as that under the action of EI wave, while the maximum value of some measuring points is only half of the maximum value under the action of EI wave. However, the resonance frequency is significantly greater than that of EI wave, the maximum value reaches 65.24 Hz, which appears at the top of the gate. The dynamic response of the gate structure caused by two different wave types of earthquakes is not completely consistent. The comprehensive consideration of different wave types is of significance for the structural design and safety evaluation of the radial steel gate in the earthquake-prone areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信