{"title":"大型悬臂盖梁装配式支架施工监测及有限元仿真","authors":"C. Qu, H. Fang, Q. Feng","doi":"10.23967/j.rimni.2023.01.001","DOIUrl":null,"url":null,"abstract":"The study on the assembly support for the large cantilevered cover beam was carried out by conducting real-time monitoring on the assembly frames’ strain and displacement development processes in the actual project. Modeling of the support and numerical simulation for actual working conditions were presented. The monitoring data and analysis results show that the overall stress ratio of the support was less than 30%. And as the concrete structure being supported hardened, the support frame was unloaded. When the stress ratio was then reduced to less than 10%, it was the most appropriate time to remove the bracing frame. The maximum strain from the simulation did not exceed 66.26% of the theoretical maximum strain of the rod. The actual construction conditions and the spatial form of the support affected the force situation, resulting in the deviation from the theoretical maximum strain at certain phases. The analysis results and trends reflect the low utilization rate of such framing rods. The results of the study can be used as a reference for the topology optimization of assembled support frames for large cantilevered cover beams.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction monitoring and finite element simulation of assembly support for large cantilever cover beam\",\"authors\":\"C. Qu, H. Fang, Q. Feng\",\"doi\":\"10.23967/j.rimni.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study on the assembly support for the large cantilevered cover beam was carried out by conducting real-time monitoring on the assembly frames’ strain and displacement development processes in the actual project. Modeling of the support and numerical simulation for actual working conditions were presented. The monitoring data and analysis results show that the overall stress ratio of the support was less than 30%. And as the concrete structure being supported hardened, the support frame was unloaded. When the stress ratio was then reduced to less than 10%, it was the most appropriate time to remove the bracing frame. The maximum strain from the simulation did not exceed 66.26% of the theoretical maximum strain of the rod. The actual construction conditions and the spatial form of the support affected the force situation, resulting in the deviation from the theoretical maximum strain at certain phases. The analysis results and trends reflect the low utilization rate of such framing rods. The results of the study can be used as a reference for the topology optimization of assembled support frames for large cantilevered cover beams.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2023.01.001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2023.01.001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Construction monitoring and finite element simulation of assembly support for large cantilever cover beam
The study on the assembly support for the large cantilevered cover beam was carried out by conducting real-time monitoring on the assembly frames’ strain and displacement development processes in the actual project. Modeling of the support and numerical simulation for actual working conditions were presented. The monitoring data and analysis results show that the overall stress ratio of the support was less than 30%. And as the concrete structure being supported hardened, the support frame was unloaded. When the stress ratio was then reduced to less than 10%, it was the most appropriate time to remove the bracing frame. The maximum strain from the simulation did not exceed 66.26% of the theoretical maximum strain of the rod. The actual construction conditions and the spatial form of the support affected the force situation, resulting in the deviation from the theoretical maximum strain at certain phases. The analysis results and trends reflect the low utilization rate of such framing rods. The results of the study can be used as a reference for the topology optimization of assembled support frames for large cantilevered cover beams.
期刊介绍:
International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.