基于混合模型的风机叶片结冰预测

Q3 Engineering
P. Cheng, He Jing, C. Hao, Yuan Xinpan, Deng Xiaojun
{"title":"基于混合模型的风机叶片结冰预测","authors":"P. Cheng, He Jing, C. Hao, Yuan Xinpan, Deng Xiaojun","doi":"10.23940/ijpe.19.11.p6.28822890","DOIUrl":null,"url":null,"abstract":"For the problem that fan blade icing failures cannot be accurately predicted in advance, a data-driven fault prediction method is proposed in this paper. Firstly, the delay window is introduced to the PCA algorithm to extract the fault mode related features from the SCADA high-dimensional data. Then, the trained Elman neural network is adopted to predict the future value of the relevant features. Finally, a BP self-clustering algorithm is designed to predict the icing fault of the blade with the multi-source data fusion. The results show that the proposed method can effectively predict the icing failure of wind turbine blades and has reference significance for the maintenance of wind turbines.","PeriodicalId":39483,"journal":{"name":"International Journal of Performability Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Icing Prediction of Fan Blade based on a Hybrid Model\",\"authors\":\"P. Cheng, He Jing, C. Hao, Yuan Xinpan, Deng Xiaojun\",\"doi\":\"10.23940/ijpe.19.11.p6.28822890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the problem that fan blade icing failures cannot be accurately predicted in advance, a data-driven fault prediction method is proposed in this paper. Firstly, the delay window is introduced to the PCA algorithm to extract the fault mode related features from the SCADA high-dimensional data. Then, the trained Elman neural network is adopted to predict the future value of the relevant features. Finally, a BP self-clustering algorithm is designed to predict the icing fault of the blade with the multi-source data fusion. The results show that the proposed method can effectively predict the icing failure of wind turbine blades and has reference significance for the maintenance of wind turbines.\",\"PeriodicalId\":39483,\"journal\":{\"name\":\"International Journal of Performability Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Performability Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23940/ijpe.19.11.p6.28822890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Performability Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23940/ijpe.19.11.p6.28822890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

摘要

针对风机叶片结冰故障无法提前准确预测的问题,提出了一种数据驱动的故障预测方法。首先,在PCA算法中引入延迟窗口,从SCADA高维数据中提取故障模式相关特征;然后,利用训练好的Elman神经网络对相关特征的未来值进行预测。最后,设计了基于BP自聚类的多源数据融合预测叶片结冰故障的算法。结果表明,该方法能有效预测风机叶片结冰故障,对风机维护具有参考意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Icing Prediction of Fan Blade based on a Hybrid Model
For the problem that fan blade icing failures cannot be accurately predicted in advance, a data-driven fault prediction method is proposed in this paper. Firstly, the delay window is introduced to the PCA algorithm to extract the fault mode related features from the SCADA high-dimensional data. Then, the trained Elman neural network is adopted to predict the future value of the relevant features. Finally, a BP self-clustering algorithm is designed to predict the icing fault of the blade with the multi-source data fusion. The results show that the proposed method can effectively predict the icing failure of wind turbine blades and has reference significance for the maintenance of wind turbines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Performability Engineering
International Journal of Performability Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.30
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信