具有粘性阻尼的动态von Karman方程

Q3 Mathematics
B. El-Aqqad, J. Oudaani, A. El Mouatasim
{"title":"具有粘性阻尼的动态von Karman方程","authors":"B. El-Aqqad, J. Oudaani, A. El Mouatasim","doi":"10.23939/mmc2023.03.816","DOIUrl":null,"url":null,"abstract":"In this paper we are interested to the dynamic von Karman equations coupled with viscous damping and without rotational forces, (α=0) [Chueshov I., Lasiecka I. (2010)], this problem describes the buckling and flexible phenomenon of small nonlinear vibration of vertical displacement to the elastic plates. Our fundamental goal is to establish the existence and the uniqueness to the weak solution for the so-called global energy, under assumption F0∈H3+ϵ(ω). Finally for illustrate our theoretical results we use the finite difference method.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic von Karman equations with viscous damping\",\"authors\":\"B. El-Aqqad, J. Oudaani, A. El Mouatasim\",\"doi\":\"10.23939/mmc2023.03.816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are interested to the dynamic von Karman equations coupled with viscous damping and without rotational forces, (α=0) [Chueshov I., Lasiecka I. (2010)], this problem describes the buckling and flexible phenomenon of small nonlinear vibration of vertical displacement to the elastic plates. Our fundamental goal is to establish the existence and the uniqueness to the weak solution for the so-called global energy, under assumption F0∈H3+ϵ(ω). Finally for illustrate our theoretical results we use the finite difference method.\",\"PeriodicalId\":37156,\"journal\":{\"name\":\"Mathematical Modeling and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modeling and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/mmc2023.03.816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.03.816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们感兴趣的是耦合粘性阻尼和无旋转力(α=0)的动态von Karman方程[Chueshov I., Lasiecka I.(2010)],该问题描述了垂直位移的小非线性振动对弹性板的屈曲和柔性现象。我们的基本目标是在假设F0∈H3+ ε (ω)下,建立所谓全局能量弱解的存在性和唯一性。最后,为了说明我们的理论结果,我们使用了有限差分法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic von Karman equations with viscous damping
In this paper we are interested to the dynamic von Karman equations coupled with viscous damping and without rotational forces, (α=0) [Chueshov I., Lasiecka I. (2010)], this problem describes the buckling and flexible phenomenon of small nonlinear vibration of vertical displacement to the elastic plates. Our fundamental goal is to establish the existence and the uniqueness to the weak solution for the so-called global energy, under assumption F0∈H3+ϵ(ω). Finally for illustrate our theoretical results we use the finite difference method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信