求解Toeplitz线性系统的新算法

Q3 Mathematics
O. F. Aoulad, C. Tajani
{"title":"求解Toeplitz线性系统的新算法","authors":"O. F. Aoulad, C. Tajani","doi":"10.23939/mmc2023.03.807","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in solving the Toeplitz linear systems. By exploiting the special Toeplitz structure, we give a new decomposition form of the coefficient matrix. Based on this matrix decomposition form and combined with the Sherman–Morrison formula, we propose an efficient algorithm for solving the considered problem. A typical example is presented to illustrate the different steps of the proposed algorithm. In addition, numerical tests are given showing the efficiency of our algorithm.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new algorithm for solving Toeplitz linear systems\",\"authors\":\"O. F. Aoulad, C. Tajani\",\"doi\":\"10.23939/mmc2023.03.807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are interested in solving the Toeplitz linear systems. By exploiting the special Toeplitz structure, we give a new decomposition form of the coefficient matrix. Based on this matrix decomposition form and combined with the Sherman–Morrison formula, we propose an efficient algorithm for solving the considered problem. A typical example is presented to illustrate the different steps of the proposed algorithm. In addition, numerical tests are given showing the efficiency of our algorithm.\",\"PeriodicalId\":37156,\"journal\":{\"name\":\"Mathematical Modeling and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modeling and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/mmc2023.03.807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.03.807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对求解Toeplitz线性系统感兴趣。利用特殊的Toeplitz结构,给出了系数矩阵的新的分解形式。基于这种矩阵分解形式,结合Sherman-Morrison公式,我们提出了一种求解所考虑问题的有效算法。给出了一个典型的例子来说明该算法的不同步骤。最后通过数值实验验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new algorithm for solving Toeplitz linear systems
In this paper, we are interested in solving the Toeplitz linear systems. By exploiting the special Toeplitz structure, we give a new decomposition form of the coefficient matrix. Based on this matrix decomposition form and combined with the Sherman–Morrison formula, we propose an efficient algorithm for solving the considered problem. A typical example is presented to illustrate the different steps of the proposed algorithm. In addition, numerical tests are given showing the efficiency of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信