一种新的共轭梯度法训练前馈神经网络的性能评价

Q3 Mathematics
K. Kamilu, M. I. Sulaiman, A. Muhammad, A. W. Mohamad, M. Mamat
{"title":"一种新的共轭梯度法训练前馈神经网络的性能评价","authors":"K. Kamilu, M. I. Sulaiman, A. Muhammad, A. W. Mohamad, M. Mamat","doi":"10.23939/mmc2023.02.326","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a new conjugate gradient method for solving unconstrained optimization problems. The proposed method satisfies the sufficient decent property irrespective of the line search and the global convergence was established under some suitable. Further, the new method was used to train different sets of data via a feed forward neural network. Results obtained show that the proposed algorithm significantly reduces the computational time by speeding up the directional minimization with a faster convergence rate.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance evaluation of a novel Conjugate Gradient Method for training feed forward neural network\",\"authors\":\"K. Kamilu, M. I. Sulaiman, A. Muhammad, A. W. Mohamad, M. Mamat\",\"doi\":\"10.23939/mmc2023.02.326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct a new conjugate gradient method for solving unconstrained optimization problems. The proposed method satisfies the sufficient decent property irrespective of the line search and the global convergence was established under some suitable. Further, the new method was used to train different sets of data via a feed forward neural network. Results obtained show that the proposed algorithm significantly reduces the computational time by speeding up the directional minimization with a faster convergence rate.\",\"PeriodicalId\":37156,\"journal\":{\"name\":\"Mathematical Modeling and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modeling and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/mmc2023.02.326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2023.02.326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文构造了求解无约束优化问题的一种新的共轭梯度法。该方法与线搜索无关,满足足够的体面性,并在一定条件下证明了算法的全局收敛性。此外,该方法还通过前馈神经网络对不同的数据集进行训练。结果表明,该算法通过加快方向最小化速度和更快的收敛速度显著减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of a novel Conjugate Gradient Method for training feed forward neural network
In this paper, we construct a new conjugate gradient method for solving unconstrained optimization problems. The proposed method satisfies the sufficient decent property irrespective of the line search and the global convergence was established under some suitable. Further, the new method was used to train different sets of data via a feed forward neural network. Results obtained show that the proposed algorithm significantly reduces the computational time by speeding up the directional minimization with a faster convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信