非自治边界柯西问题的局部流形:存在性与吸引性

Q3 Mathematics
A. Jerroudi, M. Moussi
{"title":"非自治边界柯西问题的局部流形:存在性与吸引性","authors":"A. Jerroudi, M. Moussi","doi":"10.23939/mmc2022.03.678","DOIUrl":null,"url":null,"abstract":"In this work we establish the existence of local stable and local unstable manifolds for nonlinear boundary Cauchy problems. Moreover, we illustrate our results by an application to a non-autonomous Fisher–Kolmogorov equation.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local manifolds for non-autonomous boundary Cauchy problems: existence and attractivity\",\"authors\":\"A. Jerroudi, M. Moussi\",\"doi\":\"10.23939/mmc2022.03.678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we establish the existence of local stable and local unstable manifolds for nonlinear boundary Cauchy problems. Moreover, we illustrate our results by an application to a non-autonomous Fisher–Kolmogorov equation.\",\"PeriodicalId\":37156,\"journal\":{\"name\":\"Mathematical Modeling and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modeling and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/mmc2022.03.678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2022.03.678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了非线性边界柯西问题的局部稳定流形和局部不稳定流形的存在性。此外,我们通过一个非自治Fisher-Kolmogorov方程的应用来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local manifolds for non-autonomous boundary Cauchy problems: existence and attractivity
In this work we establish the existence of local stable and local unstable manifolds for nonlinear boundary Cauchy problems. Moreover, we illustrate our results by an application to a non-autonomous Fisher–Kolmogorov equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信