{"title":"HingeBoost:基于roc的分类和变量选择Boost","authors":"Zhuo Wang","doi":"10.2202/1557-4679.1304","DOIUrl":null,"url":null,"abstract":"In disease classification, a traditional technique is the receiver operative characteristic (ROC) curve and the area under the curve (AUC). With high-dimensional data, the ROC techniques are needed to conduct classification and variable selection. The current ROC methods do not explicitly incorporate unequal misclassification costs or do not have a theoretical grounding for optimizing the AUC. Empirical studies in the literature have demonstrated that optimizing the hinge loss can maximize the AUC approximately. In theory, minimizing the hinge rank loss is equivalent to minimizing the AUC in the asymptotic limit. In this article, we propose a novel nonparametric method HingeBoost to optimize a weighted hinge loss incorporating misclassification costs. HingeBoost can be used to construct linear and nonlinear classifiers. The estimation and variable selection for the hinge loss are addressed by a new boosting algorithm. Furthermore, the proposed twin HingeBoost can select more sparse predictors. Some properties of HingeBoost are studied as well. To compare HingeBoost with existing classification methods, we present empirical study results using data from simulations and a prostate cancer study with mass spectrometry-based proteomics.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2011-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2202/1557-4679.1304","citationCount":"30","resultStr":"{\"title\":\"HingeBoost: ROC-Based Boost for Classification and Variable Selection\",\"authors\":\"Zhuo Wang\",\"doi\":\"10.2202/1557-4679.1304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In disease classification, a traditional technique is the receiver operative characteristic (ROC) curve and the area under the curve (AUC). With high-dimensional data, the ROC techniques are needed to conduct classification and variable selection. The current ROC methods do not explicitly incorporate unequal misclassification costs or do not have a theoretical grounding for optimizing the AUC. Empirical studies in the literature have demonstrated that optimizing the hinge loss can maximize the AUC approximately. In theory, minimizing the hinge rank loss is equivalent to minimizing the AUC in the asymptotic limit. In this article, we propose a novel nonparametric method HingeBoost to optimize a weighted hinge loss incorporating misclassification costs. HingeBoost can be used to construct linear and nonlinear classifiers. The estimation and variable selection for the hinge loss are addressed by a new boosting algorithm. Furthermore, the proposed twin HingeBoost can select more sparse predictors. Some properties of HingeBoost are studied as well. To compare HingeBoost with existing classification methods, we present empirical study results using data from simulations and a prostate cancer study with mass spectrometry-based proteomics.\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2011-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2202/1557-4679.1304\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2202/1557-4679.1304\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1304","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HingeBoost: ROC-Based Boost for Classification and Variable Selection
In disease classification, a traditional technique is the receiver operative characteristic (ROC) curve and the area under the curve (AUC). With high-dimensional data, the ROC techniques are needed to conduct classification and variable selection. The current ROC methods do not explicitly incorporate unequal misclassification costs or do not have a theoretical grounding for optimizing the AUC. Empirical studies in the literature have demonstrated that optimizing the hinge loss can maximize the AUC approximately. In theory, minimizing the hinge rank loss is equivalent to minimizing the AUC in the asymptotic limit. In this article, we propose a novel nonparametric method HingeBoost to optimize a weighted hinge loss incorporating misclassification costs. HingeBoost can be used to construct linear and nonlinear classifiers. The estimation and variable selection for the hinge loss are addressed by a new boosting algorithm. Furthermore, the proposed twin HingeBoost can select more sparse predictors. Some properties of HingeBoost are studied as well. To compare HingeBoost with existing classification methods, we present empirical study results using data from simulations and a prostate cancer study with mass spectrometry-based proteomics.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.