{"title":"高维生存数据半参数比例风险模型中的贝叶斯变量选择","authors":"Kyu Ha Lee, S. Chakraborty, Jianguo Sun","doi":"10.2202/1557-4679.1301","DOIUrl":null,"url":null,"abstract":"Variable selection for high dimensional data has recently received a great deal of attention. However, due to the complex structure of the likelihood, only limited developments have been made for time-to-event data where censoring is present. In this paper, we propose a Bayesian variable selection scheme for a Bayesian semiparametric survival model for right censored survival data sets. A special shrinkage prior on the coefficients corresponding to the predictor variables is used to handle cases when the explanatory variables are of very high-dimension. The shrinkage prior is obtained through a scale mixture representation of Normal and Gamma distributions. Our proposed variable selection prior corresponds to the well known lasso penalty. The likelihood function is based on the Cox proportional hazards model framework, where the cumulative baseline hazard function is modeled a priori by a gamma process. We assign a prior on the tuning parameter of the shrinkage prior and adaptively control the sparsity of our model. The primary use of the proposed model is to identify the important covariates relating to the survival curves. To implement our methodology, we have developed a fast Markov chain Monte Carlo algorithm with an adaptive jumping rule. We have successfully applied our method on simulated data sets under two different settings and real microarray data sets which contain right censored survival time. The performance of our Bayesian variable selection model compared with other competing methods is also provided to demonstrate the superiority of our method. A short description of the biological relevance of the selected genes in the real data sets is provided, further strengthening our claims.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2202/1557-4679.1301","citationCount":"25","resultStr":"{\"title\":\"Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data\",\"authors\":\"Kyu Ha Lee, S. Chakraborty, Jianguo Sun\",\"doi\":\"10.2202/1557-4679.1301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variable selection for high dimensional data has recently received a great deal of attention. However, due to the complex structure of the likelihood, only limited developments have been made for time-to-event data where censoring is present. In this paper, we propose a Bayesian variable selection scheme for a Bayesian semiparametric survival model for right censored survival data sets. A special shrinkage prior on the coefficients corresponding to the predictor variables is used to handle cases when the explanatory variables are of very high-dimension. The shrinkage prior is obtained through a scale mixture representation of Normal and Gamma distributions. Our proposed variable selection prior corresponds to the well known lasso penalty. The likelihood function is based on the Cox proportional hazards model framework, where the cumulative baseline hazard function is modeled a priori by a gamma process. We assign a prior on the tuning parameter of the shrinkage prior and adaptively control the sparsity of our model. The primary use of the proposed model is to identify the important covariates relating to the survival curves. To implement our methodology, we have developed a fast Markov chain Monte Carlo algorithm with an adaptive jumping rule. We have successfully applied our method on simulated data sets under two different settings and real microarray data sets which contain right censored survival time. The performance of our Bayesian variable selection model compared with other competing methods is also provided to demonstrate the superiority of our method. A short description of the biological relevance of the selected genes in the real data sets is provided, further strengthening our claims.\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2011-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2202/1557-4679.1301\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2202/1557-4679.1301\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1301","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data
Variable selection for high dimensional data has recently received a great deal of attention. However, due to the complex structure of the likelihood, only limited developments have been made for time-to-event data where censoring is present. In this paper, we propose a Bayesian variable selection scheme for a Bayesian semiparametric survival model for right censored survival data sets. A special shrinkage prior on the coefficients corresponding to the predictor variables is used to handle cases when the explanatory variables are of very high-dimension. The shrinkage prior is obtained through a scale mixture representation of Normal and Gamma distributions. Our proposed variable selection prior corresponds to the well known lasso penalty. The likelihood function is based on the Cox proportional hazards model framework, where the cumulative baseline hazard function is modeled a priori by a gamma process. We assign a prior on the tuning parameter of the shrinkage prior and adaptively control the sparsity of our model. The primary use of the proposed model is to identify the important covariates relating to the survival curves. To implement our methodology, we have developed a fast Markov chain Monte Carlo algorithm with an adaptive jumping rule. We have successfully applied our method on simulated data sets under two different settings and real microarray data sets which contain right censored survival time. The performance of our Bayesian variable selection model compared with other competing methods is also provided to demonstrate the superiority of our method. A short description of the biological relevance of the selected genes in the real data sets is provided, further strengthening our claims.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.