{"title":"经验效率最大化:随机实验和生存分析中改进的局部有效协变量调整","authors":"D. Rubin, M. J. van der Laan","doi":"10.2202/1557-4679.1084","DOIUrl":null,"url":null,"abstract":"It has long been recognized that covariate adjustment can increase precision in randomized experiments, even when it is not strictly necessary. Adjustment is often straightforward when a discrete covariate partitions the sample into a handful of strata, but becomes more involved with even a single continuous covariate such as age. As randomized experiments remain a gold standard for scientific inquiry, and the information age facilitates a massive collection of baseline information, the longstanding problem of if and how to adjust for covariates is likely to engage investigators for the foreseeable future.In the locally efficient estimation approach introduced for general coarsened data structures by James Robins and collaborators, one first fits a relatively small working model, often with maximum likelihood, giving a nuisance parameter fit in an estimating equation for the parameter of interest. The usual advertisement is that the estimator will be asymptotically efficient if the working model is correct, but otherwise will still be consistent and asymptotically Gaussian.However, by applying standard likelihood-based fits to misspecified working models in covariate adjustment problems, one can poorly estimate the parameter of interest. We propose a new method, empirical efficiency maximization, to optimize the working model fit for the resulting parameter estimate.In addition to the randomized experiment setting, we show how our covariate adjustment procedure can be used in survival analysis applications. Numerical asymptotic efficiency calculations demonstrate gains relative to standard locally efficient estimators.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"13 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2008-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2202/1557-4679.1084","citationCount":"101","resultStr":"{\"title\":\"Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis\",\"authors\":\"D. Rubin, M. J. van der Laan\",\"doi\":\"10.2202/1557-4679.1084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has long been recognized that covariate adjustment can increase precision in randomized experiments, even when it is not strictly necessary. Adjustment is often straightforward when a discrete covariate partitions the sample into a handful of strata, but becomes more involved with even a single continuous covariate such as age. As randomized experiments remain a gold standard for scientific inquiry, and the information age facilitates a massive collection of baseline information, the longstanding problem of if and how to adjust for covariates is likely to engage investigators for the foreseeable future.In the locally efficient estimation approach introduced for general coarsened data structures by James Robins and collaborators, one first fits a relatively small working model, often with maximum likelihood, giving a nuisance parameter fit in an estimating equation for the parameter of interest. The usual advertisement is that the estimator will be asymptotically efficient if the working model is correct, but otherwise will still be consistent and asymptotically Gaussian.However, by applying standard likelihood-based fits to misspecified working models in covariate adjustment problems, one can poorly estimate the parameter of interest. We propose a new method, empirical efficiency maximization, to optimize the working model fit for the resulting parameter estimate.In addition to the randomized experiment setting, we show how our covariate adjustment procedure can be used in survival analysis applications. Numerical asymptotic efficiency calculations demonstrate gains relative to standard locally efficient estimators.\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2008-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2202/1557-4679.1084\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2202/1557-4679.1084\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1084","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis
It has long been recognized that covariate adjustment can increase precision in randomized experiments, even when it is not strictly necessary. Adjustment is often straightforward when a discrete covariate partitions the sample into a handful of strata, but becomes more involved with even a single continuous covariate such as age. As randomized experiments remain a gold standard for scientific inquiry, and the information age facilitates a massive collection of baseline information, the longstanding problem of if and how to adjust for covariates is likely to engage investigators for the foreseeable future.In the locally efficient estimation approach introduced for general coarsened data structures by James Robins and collaborators, one first fits a relatively small working model, often with maximum likelihood, giving a nuisance parameter fit in an estimating equation for the parameter of interest. The usual advertisement is that the estimator will be asymptotically efficient if the working model is correct, but otherwise will still be consistent and asymptotically Gaussian.However, by applying standard likelihood-based fits to misspecified working models in covariate adjustment problems, one can poorly estimate the parameter of interest. We propose a new method, empirical efficiency maximization, to optimize the working model fit for the resulting parameter estimate.In addition to the randomized experiment setting, we show how our covariate adjustment procedure can be used in survival analysis applications. Numerical asymptotic efficiency calculations demonstrate gains relative to standard locally efficient estimators.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.