{"title":"二值数据最优非参数泛函估计监控机制的选择","authors":"N. Jewell, M. J. van der Laan, S. Shiboski","doi":"10.2202/1557-4679.1031","DOIUrl":null,"url":null,"abstract":"Optimal designs of dose levels in order to estimate parameters from a model for binary response data have a long and rich history. These designs are based on parametric models. Here we consider fully nonparametric models with interest focused on estimation of smooth functionals using plug-in estimators based on the nonparametric maximum likelihood estimator. An important application of the results is the derivation of the optimal choice of the monitoring time distribution function for current status observation of a survival distribution. The optimal choice depends in a simple way on the dose-response function and the form of the functional. The results can be extended to allow dependence of the monitoring mechanism on covariates.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"2 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2006-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Choice of Monitoring Mechanism for Optimal Nonparametric Functional Estimation for Binary Data\",\"authors\":\"N. Jewell, M. J. van der Laan, S. Shiboski\",\"doi\":\"10.2202/1557-4679.1031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal designs of dose levels in order to estimate parameters from a model for binary response data have a long and rich history. These designs are based on parametric models. Here we consider fully nonparametric models with interest focused on estimation of smooth functionals using plug-in estimators based on the nonparametric maximum likelihood estimator. An important application of the results is the derivation of the optimal choice of the monitoring time distribution function for current status observation of a survival distribution. The optimal choice depends in a simple way on the dose-response function and the form of the functional. The results can be extended to allow dependence of the monitoring mechanism on covariates.\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2006-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2202/1557-4679.1031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Choice of Monitoring Mechanism for Optimal Nonparametric Functional Estimation for Binary Data
Optimal designs of dose levels in order to estimate parameters from a model for binary response data have a long and rich history. These designs are based on parametric models. Here we consider fully nonparametric models with interest focused on estimation of smooth functionals using plug-in estimators based on the nonparametric maximum likelihood estimator. An important application of the results is the derivation of the optimal choice of the monitoring time distribution function for current status observation of a survival distribution. The optimal choice depends in a simple way on the dose-response function and the form of the functional. The results can be extended to allow dependence of the monitoring mechanism on covariates.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.