离散各向异性Kirchhoff型问题的临界点逼近

IF 0.5 Q3 MATHEMATICS
S. Heidarkhani, Ahmad Ghobadi, G. Caristi
{"title":"离散各向异性Kirchhoff型问题的临界点逼近","authors":"S. Heidarkhani, Ahmad Ghobadi, G. Caristi","doi":"10.21494/iste.op.2022.0888","DOIUrl":null,"url":null,"abstract":". In this paper, we study a discrete anisotropic Kirchhoff type problem using variational methods and critical point theory, and we discuss the existence of two solutions for the problem. A example is presented to demonstrate the application of our main results.","PeriodicalId":43512,"journal":{"name":"Advances in Pure and Applied Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical point approaches for discrete anisotropic Kirchhoff type problems\",\"authors\":\"S. Heidarkhani, Ahmad Ghobadi, G. Caristi\",\"doi\":\"10.21494/iste.op.2022.0888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study a discrete anisotropic Kirchhoff type problem using variational methods and critical point theory, and we discuss the existence of two solutions for the problem. A example is presented to demonstrate the application of our main results.\",\"PeriodicalId\":43512,\"journal\":{\"name\":\"Advances in Pure and Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21494/iste.op.2022.0888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21494/iste.op.2022.0888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 本文利用变分方法和临界点理论研究了一类离散各向异性Kirchhoff型问题,并讨论了该问题的两个解的存在性。最后给出了一个例子来说明我们的主要结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical point approaches for discrete anisotropic Kirchhoff type problems
. In this paper, we study a discrete anisotropic Kirchhoff type problem using variational methods and critical point theory, and we discuss the existence of two solutions for the problem. A example is presented to demonstrate the application of our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信