Qiang Zhang, Fumiya Takahashi, Kotaro Sato, W. Tsuru, K. Yokota
{"title":"切向吹气圆柱射流方向控制","authors":"Qiang Zhang, Fumiya Takahashi, Kotaro Sato, W. Tsuru, K. Yokota","doi":"10.2322/TJSASS.64.181","DOIUrl":null,"url":null,"abstract":"We propose a tangential blowing cylinder, a type of circulation control wing, to control the direction of a jet replacing a blade or a cascade. Flow characteristics including de fl ection are experimentally investigated. Speci fi cally, visualization observations, velocity distribution measurements, and the e ff ects of momentum ratio, injection angle, and location of the cylinder on the de fl ection angle of the jet are analyzed. The stalling at an angle-of-attack above 20° with a single blade impedes direction control for such large angles. However, the jet may be bent to approximately 90° by using the proposed tangential blowing cylinder. The optimal injection angle for controlling the jet direction and the unsteady characteristics downstream of the tangential blowing cylinder are also determined.","PeriodicalId":54419,"journal":{"name":"Transactions of the Japan Society for Aeronautical and Space Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Jet Direction Control Using Circular Cylinder with Tangential Blowing\",\"authors\":\"Qiang Zhang, Fumiya Takahashi, Kotaro Sato, W. Tsuru, K. Yokota\",\"doi\":\"10.2322/TJSASS.64.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a tangential blowing cylinder, a type of circulation control wing, to control the direction of a jet replacing a blade or a cascade. Flow characteristics including de fl ection are experimentally investigated. Speci fi cally, visualization observations, velocity distribution measurements, and the e ff ects of momentum ratio, injection angle, and location of the cylinder on the de fl ection angle of the jet are analyzed. The stalling at an angle-of-attack above 20° with a single blade impedes direction control for such large angles. However, the jet may be bent to approximately 90° by using the proposed tangential blowing cylinder. The optimal injection angle for controlling the jet direction and the unsteady characteristics downstream of the tangential blowing cylinder are also determined.\",\"PeriodicalId\":54419,\"journal\":{\"name\":\"Transactions of the Japan Society for Aeronautical and Space Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Japan Society for Aeronautical and Space Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2322/TJSASS.64.181\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2322/TJSASS.64.181","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Jet Direction Control Using Circular Cylinder with Tangential Blowing
We propose a tangential blowing cylinder, a type of circulation control wing, to control the direction of a jet replacing a blade or a cascade. Flow characteristics including de fl ection are experimentally investigated. Speci fi cally, visualization observations, velocity distribution measurements, and the e ff ects of momentum ratio, injection angle, and location of the cylinder on the de fl ection angle of the jet are analyzed. The stalling at an angle-of-attack above 20° with a single blade impedes direction control for such large angles. However, the jet may be bent to approximately 90° by using the proposed tangential blowing cylinder. The optimal injection angle for controlling the jet direction and the unsteady characteristics downstream of the tangential blowing cylinder are also determined.