低雷诺数流中升沉机翼非定常气动特性的测量

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE
M. Okamoto, Shota Fukatsu, D. Sasaki
{"title":"低雷诺数流中升沉机翼非定常气动特性的测量","authors":"M. Okamoto, Shota Fukatsu, D. Sasaki","doi":"10.2322/TJSASS.64.147","DOIUrl":null,"url":null,"abstract":"The objective of this study is to determine the two-dimensional unsteady aerodynamic forces and moment acting on a heaving wing in a uniform flow using a wind tunnel. However, it is difficult to measure the aerodynamic forces acting on the heaving wing due to measuring device oscillation and the large inertial force of the wing model. In this study, a new type of wind tunnel test, named ‘‘heaving wind tunnel,’’ was developed. Here, the wing model remains stationary as the wind tunnel oscillates with a heaving motion. The advantage of this experimental method is that the measurement results are unaffected by the large inertial force acting on the oscillating wing model. Therefore, the wing model can be used in the same way as in steady state experiments. The normal force, thrust and pitching moment coefficients of a heaving airfoil were measured using the heaving wind tunnel test developed in this study. Through flow visualizations and pressure measurements, we found that the rapid drop in normal force coefficient after it reached its maximum value was due to a large growing leading-edge vortex.","PeriodicalId":54419,"journal":{"name":"Transactions of the Japan Society for Aeronautical and Space Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Measurement of Unsteady Aerodynamic Characteristics of a Heaving Wing in a Low Reynolds Number Flow\",\"authors\":\"M. Okamoto, Shota Fukatsu, D. Sasaki\",\"doi\":\"10.2322/TJSASS.64.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to determine the two-dimensional unsteady aerodynamic forces and moment acting on a heaving wing in a uniform flow using a wind tunnel. However, it is difficult to measure the aerodynamic forces acting on the heaving wing due to measuring device oscillation and the large inertial force of the wing model. In this study, a new type of wind tunnel test, named ‘‘heaving wind tunnel,’’ was developed. Here, the wing model remains stationary as the wind tunnel oscillates with a heaving motion. The advantage of this experimental method is that the measurement results are unaffected by the large inertial force acting on the oscillating wing model. Therefore, the wing model can be used in the same way as in steady state experiments. The normal force, thrust and pitching moment coefficients of a heaving airfoil were measured using the heaving wind tunnel test developed in this study. Through flow visualizations and pressure measurements, we found that the rapid drop in normal force coefficient after it reached its maximum value was due to a large growing leading-edge vortex.\",\"PeriodicalId\":54419,\"journal\":{\"name\":\"Transactions of the Japan Society for Aeronautical and Space Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Japan Society for Aeronautical and Space Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2322/TJSASS.64.147\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2322/TJSASS.64.147","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是利用风洞确定在均匀流动中作用于起伏机翼的二维非定常气动力和力矩。然而,由于测量装置的振荡和机翼模型的大惯性力,使作用在升沉机翼上的气动力难以测量。在本研究中,开发了一种新型风洞试验,命名为“起伏风洞”。在这里,当风洞随着起伏运动振荡时,机翼模型保持静止。该实验方法的优点是测量结果不受作用在振荡翼模型上的大惯性力的影响。因此,机翼模型可以与稳态实验一样使用。利用研制的升沉风洞试验,测量了升沉翼型的法向力、推力和俯仰力矩系数。通过流动可视化和压力测量,我们发现法向力系数在达到最大值后迅速下降是由于前缘涡的巨大增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of Unsteady Aerodynamic Characteristics of a Heaving Wing in a Low Reynolds Number Flow
The objective of this study is to determine the two-dimensional unsteady aerodynamic forces and moment acting on a heaving wing in a uniform flow using a wind tunnel. However, it is difficult to measure the aerodynamic forces acting on the heaving wing due to measuring device oscillation and the large inertial force of the wing model. In this study, a new type of wind tunnel test, named ‘‘heaving wind tunnel,’’ was developed. Here, the wing model remains stationary as the wind tunnel oscillates with a heaving motion. The advantage of this experimental method is that the measurement results are unaffected by the large inertial force acting on the oscillating wing model. Therefore, the wing model can be used in the same way as in steady state experiments. The normal force, thrust and pitching moment coefficients of a heaving airfoil were measured using the heaving wind tunnel test developed in this study. Through flow visualizations and pressure measurements, we found that the rapid drop in normal force coefficient after it reached its maximum value was due to a large growing leading-edge vortex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信