{"title":"同时发电和热空气的新型太阳能光伏集热器(pvtc)的CFD研究","authors":"Sanjeet Kumar, Suprem R. Das, A. Biswas, B. Das","doi":"10.2316/j.2022.203-0383","DOIUrl":null,"url":null,"abstract":"The objective of the present study is to develop an innovative air-based photovoltaic thermal collector (PVTC) and perform a detailed thermal analysis of the same using Ansys Fluent CFD software to improve its efficiency. Rectangular baffles are attached on either side of the thermal absorber having air flow on its both sides. Two different design features of the baffles are considered – baffle length and pitch. The variations of useful heat gain, electrical efficiency, overall efficiency, and air outlet temperature are modelled for a characteristic solar day. It is shown that the present PVTC achieves the maximum overall efficiency of 44.44% for a baffle length of 44 mm and pitch of 60 mm. The flow physics is then investigated to understand the heat transfer augmentation between the baffles with different pitch lengths. Finally, usefulness of the PVTC is shown by comparing its performance with a few established designs of the literature.","PeriodicalId":43153,"journal":{"name":"International Journal of Power and Energy Systems","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD STUDY OF AN INNOVATIVE SOLAR PHOTOVOLTAIC THERMAL COLLECTOR (PVTC) FOR SIMULTANEOUS GENERATION OF ELECTRICITY AND HOT AIR\",\"authors\":\"Sanjeet Kumar, Suprem R. Das, A. Biswas, B. Das\",\"doi\":\"10.2316/j.2022.203-0383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the present study is to develop an innovative air-based photovoltaic thermal collector (PVTC) and perform a detailed thermal analysis of the same using Ansys Fluent CFD software to improve its efficiency. Rectangular baffles are attached on either side of the thermal absorber having air flow on its both sides. Two different design features of the baffles are considered – baffle length and pitch. The variations of useful heat gain, electrical efficiency, overall efficiency, and air outlet temperature are modelled for a characteristic solar day. It is shown that the present PVTC achieves the maximum overall efficiency of 44.44% for a baffle length of 44 mm and pitch of 60 mm. The flow physics is then investigated to understand the heat transfer augmentation between the baffles with different pitch lengths. Finally, usefulness of the PVTC is shown by comparing its performance with a few established designs of the literature.\",\"PeriodicalId\":43153,\"journal\":{\"name\":\"International Journal of Power and Energy Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2316/j.2022.203-0383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/j.2022.203-0383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
CFD STUDY OF AN INNOVATIVE SOLAR PHOTOVOLTAIC THERMAL COLLECTOR (PVTC) FOR SIMULTANEOUS GENERATION OF ELECTRICITY AND HOT AIR
The objective of the present study is to develop an innovative air-based photovoltaic thermal collector (PVTC) and perform a detailed thermal analysis of the same using Ansys Fluent CFD software to improve its efficiency. Rectangular baffles are attached on either side of the thermal absorber having air flow on its both sides. Two different design features of the baffles are considered – baffle length and pitch. The variations of useful heat gain, electrical efficiency, overall efficiency, and air outlet temperature are modelled for a characteristic solar day. It is shown that the present PVTC achieves the maximum overall efficiency of 44.44% for a baffle length of 44 mm and pitch of 60 mm. The flow physics is then investigated to understand the heat transfer augmentation between the baffles with different pitch lengths. Finally, usefulness of the PVTC is shown by comparing its performance with a few established designs of the literature.
期刊介绍:
First published in 1972, this journal serves a worldwide readership of power and energy professionals. As one of the premier referred publications in the field, this journal strives to be the first to explore emerging energy issues, featuring only papers of the highest scientific merit. The subject areas of this journal include power transmission, distribution and generation, electric power quality, education, energy development, competition and regulation, power electronics, communication, electric machinery, power engineering systems, protection, reliability and security, energy management systems and supervisory control, economics, dispatching and scheduling, energy systems modelling and simulation, alternative energy sources, policy and planning.