阿瑟截断迹的一种变体的粗略几何展开及其一些应用

Pub Date : 2021-09-21 DOI:10.2140/pjm.2022.321.193
Hongjie Yu
{"title":"阿瑟截断迹的一种变体的粗略几何展开及其一些应用","authors":"Hongjie Yu","doi":"10.2140/pjm.2022.321.193","DOIUrl":null,"url":null,"abstract":"Let F be a global function field with constant field $\\mathbb{F}_q$. Let G be a reductive group over $\\mathbb{F}_q$. We establish a variant of Arthur's truncated kernel for G and for its Lie algebra which generalizes Arthur's original construction. We establish a coarse geometric expansion for our variant truncation. As applications, we consider some existence and uniqueness problems of some cuspidal automorphic representations for the functions field of the projective line $\\mathbb{P}^1_{\\mathbb{F}_q}$ with two points of ramifications.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A coarse geometric expansion of a variant of\\nArthur’s truncated traces and some applications\",\"authors\":\"Hongjie Yu\",\"doi\":\"10.2140/pjm.2022.321.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F be a global function field with constant field $\\\\mathbb{F}_q$. Let G be a reductive group over $\\\\mathbb{F}_q$. We establish a variant of Arthur's truncated kernel for G and for its Lie algebra which generalizes Arthur's original construction. We establish a coarse geometric expansion for our variant truncation. As applications, we consider some existence and uniqueness problems of some cuspidal automorphic representations for the functions field of the projective line $\\\\mathbb{P}^1_{\\\\mathbb{F}_q}$ with two points of ramifications.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2022.321.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.321.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设F为一个具有恒定域$\mathbb{F}_q$的全局函数域。设G是$\mathbb{F}_q$上的约简群。我们为G及其李代数建立了Arthur截断核的一个变体,它推广了Arthur的原始构造。我们建立了变量截断的粗几何展开式。作为应用,我们研究了具有两点分支的射影线$\mathbb{P}^1_{\mathbb{F}_q}$的函数域的一些逆自同态表示的存在唯一性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A coarse geometric expansion of a variant of Arthur’s truncated traces and some applications
Let F be a global function field with constant field $\mathbb{F}_q$. Let G be a reductive group over $\mathbb{F}_q$. We establish a variant of Arthur's truncated kernel for G and for its Lie algebra which generalizes Arthur's original construction. We establish a coarse geometric expansion for our variant truncation. As applications, we consider some existence and uniqueness problems of some cuspidal automorphic representations for the functions field of the projective line $\mathbb{P}^1_{\mathbb{F}_q}$ with two points of ramifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信