(𝕊2)mx∈n上线性向量场的极限环

Pub Date : 2023-07-26 DOI:10.2140/pjm.2023.324.249
Clara Cufí-Cabré, J. Llibre
{"title":"(𝕊2)mx∈n上线性向量场的极限环","authors":"Clara Cufí-Cabré, J. Llibre","doi":"10.2140/pjm.2023.324.249","DOIUrl":null,"url":null,"abstract":"It is well known that linear vector fields defined in (cid:82) n cannot have limit cycles, but this is not the case for linear vector fields defined in other manifolds. We study the existence of limit cycles bifurcating from a continuum of periodic orbits of linear vector fields on manifolds of the form ( (cid:83) 2 ) m × (cid:82) n when such vector fields are perturbed inside the class of all linear vector fields. The study is done using averaging theory. We also present an open problem about the maximum number of limit cycles of linear vector fields on ( (cid:83) 2 ) m × (cid:82) n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit cycles of linear vector fields on\\n(𝕊2)m× ℝn\",\"authors\":\"Clara Cufí-Cabré, J. Llibre\",\"doi\":\"10.2140/pjm.2023.324.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that linear vector fields defined in (cid:82) n cannot have limit cycles, but this is not the case for linear vector fields defined in other manifolds. We study the existence of limit cycles bifurcating from a continuum of periodic orbits of linear vector fields on manifolds of the form ( (cid:83) 2 ) m × (cid:82) n when such vector fields are perturbed inside the class of all linear vector fields. The study is done using averaging theory. We also present an open problem about the maximum number of limit cycles of linear vector fields on ( (cid:83) 2 ) m × (cid:82) n .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.324.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在(cid:82) n中定义的线性向量场不可能有极限环,但在其他流形中定义的线性向量场则不是这样。研究了形式为((cid:83) 2) m × (cid:82) n的流形上由线性向量场周期轨道连续体分叉的极限环的存在性,当这些向量场在所有线性向量场的类内被摄动时。这项研究是用平均理论完成的。我们也给出了((cid:83) 2) m × (cid:82) n上线性向量场的最大极限环数的一个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Limit cycles of linear vector fields on (𝕊2)m× ℝn
It is well known that linear vector fields defined in (cid:82) n cannot have limit cycles, but this is not the case for linear vector fields defined in other manifolds. We study the existence of limit cycles bifurcating from a continuum of periodic orbits of linear vector fields on manifolds of the form ( (cid:83) 2 ) m × (cid:82) n when such vector fields are perturbed inside the class of all linear vector fields. The study is done using averaging theory. We also present an open problem about the maximum number of limit cycles of linear vector fields on ( (cid:83) 2 ) m × (cid:82) n .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信